Classification of crystallization outcomes using deep convolutional neural networks

被引:61
作者
Bruno, Andrew E. [1 ]
Charbonneau, Patrick [2 ,3 ]
Newman, Janet [4 ]
Snell, Edward H. [5 ,6 ]
So, David R. [7 ]
Vanhoucke, Vincent [7 ]
Watkins, Christopher J. [8 ]
Williams, Shawn [9 ]
Wilson, Julie [10 ]
机构
[1] SUNY Buffalo, Ctr Computat Res, Buffalo, NY USA
[2] Duke Univ, Dept Chem, Durham, NC 27706 USA
[3] Duke Univ, Dept Phys, Durham, NC 27706 USA
[4] CSIRO, Collaborat Crystallisat Ctr, Parkville, Vic, Australia
[5] Hauptman Woodward Med Res Inst, Buffalo, NY USA
[6] SUNY Buffalo, Dept Mat Design & Innovat, Buffalo, NY USA
[7] Google Inc, Google Brain, Mountain View, CA 94043 USA
[8] CSIRO, IM&T Sci Comp, Clayton, Vic, Australia
[9] GlaxoSmithKline Inc, Platform Technol & Sci, Collegeville, PA USA
[10] Univ York, Dept Math, York, N Yorkshire, England
来源
PLOS ONE | 2018年 / 13卷 / 06期
基金
美国国家科学基金会;
关键词
PROTEIN-CRYSTALLIZATION; VISUAL ANALYSIS; TRAINING SET; IMAGES; TEXTURE;
D O I
10.1371/journal.pone.0198883
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algorithms are trained and tested on different parts of this data set. We find that more than 94% of the test images can be correctly labeled, irrespective of their experimental origin. Because crystal recognition is key to high-density screening and the systematic analysis of crystallization experiments, this approach opens the door to both industrial and fundamental research applications.
引用
收藏
页数:16
相关论文
共 60 条
  • [1] Abadi M., 2015, TensorFlow: Large-scale machine learning on heterogeneous systems.
  • [2] Computational crystallization
    Altan, Irem
    Charbonneau, Patrick
    Snell, Edward H.
    [J]. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2016, 602 : 12 - 20
  • [3] Deep learning for computational biology
    Angermueller, Christof
    Parnamaa, Tanel
    Parts, Leopold
    Stegle, Oliver
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
  • [4] [Anonymous], C4 C3 CLASSIFIER PIP
  • [5] [Anonymous], 2017, ARXIV170302442CSCV
  • [6] [Anonymous], MARCOREPOSITORY TENS
  • [7] [Anonymous], 2012, NIPS
  • [8] [Anonymous], AAAI C ART INT
  • [9] [Anonymous], TENSORFLOW SLIM IMAG
  • [10] [Anonymous], J APPL CRYST