Design and Operation of Hybrid Microfluidic Iontronic Probes for Regulated Drug Delivery

被引:8
作者
Arbring Sjostrom, Theresia [1 ]
Ivanov, Anton I. [2 ]
Bernard, Christophe [2 ]
Tybrandt, Klas [1 ]
Poxson, David J. [1 ]
Simon, Daniel T. [1 ]
Berggren, Magnus [1 ]
机构
[1] Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrkoping, Sweden
[2] Aix Marseille Univ, INSERM, INS, F-13005 Marseille, France
基金
欧洲研究理事会; 瑞典研究理事会;
关键词
bioelectronics; drug delivery; iontronics; microfluidics; organic electronics; ION; ACETYLCHOLINE; CURRENTS;
D O I
10.1002/admt.202001006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Highly controlled drug delivery devices play an increasingly important role in the development of new neuroengineering tools. Stringent-and sometimes contradicting-demands are placed on such devices, ranging from robustness in freestanding devices, to overall device miniaturization, while maintaining precise spatiotemporal control of delivery with high chemical specificity and high on/off ratio. Here, design principles of a hybrid microfluidic iontronic probe that uses flow for long-range pressure-driven transport in combination with an iontronic tip that provides electronically fine-tuned pressure-free delivery are explored. Employing a computational model, the effects of decoupling the drug reservoir by exchanging a large passive reservoir with a smaller microfluidic system are reported. The transition at the microfluidic-iontronic interface is found to require an expanded ion exchange membrane inlet in combination with a constant fluidic flow, to allow a broad range of device operation, including low source concentrations and high delivery currents. Complementary to these findings, the free-standing hybrid probe monitored in real time by an external sensor is demonstrated. From these computational and experimental results, key design principles for iontronic devices are outlined that seek to use the efficient transport enabled by microfluidics, and further, key observations of hybrid microfluidic iontronic probes are explained.
引用
收藏
页数:7
相关论文
共 28 条
[21]  
Santos HA, 2019, MICRO NANO TECHNOL, pXVII
[22]   Overcoming transport limitations in miniaturized electrophoretic delivery devices [J].
Seitanidou, Maria ;
Tybrandt, Klas ;
Berggren, Magnus ;
Simon, Daniel T. .
LAB ON A CHIP, 2019, 19 (08) :1427-1435
[23]   Microfluidic neural probes: in vivo tools for advancing neuroscience [J].
Sim, Joo Yong ;
Haney, Matthew P. ;
Park, Sung Il ;
McCall, Jordan G. ;
Jeong, Jae-Woong .
LAB ON A CHIP, 2017, 17 (08) :1406-1435
[24]   Miniaturized Ionic Polarization Diodes for Neurotransmitter Release at Synaptic Speeds [J].
Sjostrom, Theresia Arbring ;
Jonsson, Amanda ;
Gabrielsson, Erik O. ;
Berggren, Magnus ;
Simon, Daniel T. ;
Tybrandt, Klas .
ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (03)
[25]   A Decade of Iontronic Delivery Devices [J].
Sjostrom, Theresia Arbring ;
Berggren, Magnus ;
Gabrielsson, Erik O. ;
Janson, Per ;
Poxson, David J. ;
Seitanidou, Maria ;
Simon, Daniel T. .
ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (05)
[26]   Translating Electronic Currents to Precise Acetylcholine-Induced Neuronal Signaling Using an Organic Electrophoretic Delivery Device [J].
Tybrandt, Klas ;
Larsson, Karin C. ;
Kurup, Sindhulakshmi ;
Simon, Daniel T. ;
Kjall, Peter ;
Isaksson, Joakim ;
Sandberg, Mats ;
Jager, Edwin W. H. ;
Richter-Dahlfors, Agneta ;
Berggren, Magnus .
ADVANCED MATERIALS, 2009, 21 (44) :4442-+
[27]   Poly(3,4-ethylenedioxythiophene)-tosylate (PEDOT-Tos) electrodes in thermogalvanic cells [J].
Wijeratne, Kosala ;
Vagin, Mikhail ;
Brooke, Robert ;
Crispin, Xavier .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (37) :19619-19625
[28]   Controlling Epileptiform Activity with Organic Electronic Ion Pumps [J].
Williamson, Adam ;
Rivnay, Jonathan ;
Kergoat, Loig ;
Jonsson, Amanda ;
Inal, Sahika ;
Uguz, Ilke ;
Ferro, Marc ;
Ivanov, Anton ;
Sjostrom, Theresia Arbring ;
Simon, Daniel T. ;
Berggren, Magnus ;
Malliaras, George G. ;
Bernard, Christophe .
ADVANCED MATERIALS, 2015, 27 (20) :3138-3144