Modified Logarithmic Sobolev Inequalities and Transportation Cost Inequalities in Rn

被引:2
作者
Shao, Jinghai [1 ]
机构
[1] Beijing Normal Univ, Sch Math, Beijing 100875, Peoples R China
关键词
Modified logarithmic Sobolev inequalities; Prekopa-Leindler inequalities; Hamilton-Jacobi semigroups; Transportation cost inequalities; BRUNN-MINKOWSKI; LOG-SOBOLEV; POINCARE; BRASCAMP;
D O I
10.1007/s11118-009-9131-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the modified logarithmic Sobolev inequalities and transportation cost inequalities for measures with density e(-V) in R-n are established. It is proved by using Prekopa-Leindler inequalities following the idea of Bobkov-Ledoux, but a different type of condition is used which recovers Bakry-Emery criterion. As an application, we establish the modified logarithmic Sobolev and transportation cost inequalities for probability measures e(-vertical bar x vertical bar p) dx/Z(p) with p > 1 in R-n, and give out explicit estimates for their constants.
引用
收藏
页码:183 / 202
页数:20
相关论文
共 19 条
[1]  
Bakry Dominique., 2006, Functional inequalities for markov semigroups, Probability measures on groups 2004, P91
[2]  
Barthe F, 2008, POTENTIAL ANAL, V29, P167, DOI 10.1007/s11118-008-9093-5
[3]   Hypercontractivity of Hamilton-Jacobi equations [J].
Bobkov, SG ;
Gentil, I ;
Ledoux, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07) :669-696
[4]   From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities [J].
Bobkov, SG ;
Ledoux, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (05) :1028-1052
[5]  
BOBKOV SG, 2005, MEM AM MATH SOC, V829, P69
[6]   A Riemannian interpolation inequality a la Borell, Brascamp and Lieb [J].
Cordero-Erausquin, D ;
McCann, RJ ;
Schmuckenschläger, M .
INVENTIONES MATHEMATICAE, 2001, 146 (02) :219-257
[7]  
Cordero-Erausquin D., 2006, ANN FAC SCI TOULOUSE, V15, P613, DOI 10.5802/afst.1132
[8]   Measure transport on Wiener space and the Girsanov theorem [J].
Feyel, D ;
Üstünel, AS .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (11) :1025-1028
[9]   The Brunn-Minkowski inequality [J].
Gardner, RJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) :355-405
[10]   Modified logarithmic Sobolev inequalities and transportation inequalities [J].
Gentil, I ;
Guillin, A ;
Miclo, L .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (03) :409-436