High Accuracy Benchmark Problems for Allen-Cahn and Cahn-Hilliard Dynamics

被引:43
作者
Church, Jon Matteo [1 ]
Guo, Zhenlin [2 ]
Jimack, Peter K. [1 ]
Madzvamuse, Anotida [3 ]
Promislow, Keith [4 ]
Wetton, Brian [5 ]
Wise, Steven M. [6 ]
Yang, Fengwei [7 ]
机构
[1] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
[2] UC Irvine, Math Dept, Irvine, CA 92697 USA
[3] Univ Sussex, Brighton BN1 9RH, E Sussex, England
[4] Dept Math, E Lansing, MI 48864 USA
[5] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[6] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[7] Univ Surrey, Dept Chem & Proc Engn, Stag Hill Campus, Guildford GU2 7XS, Surrey, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Allen-Cahn; Cahn-Hilliard; phase field; benchmark computation; FINITE-DIFFERENCE; ENERGY; CONVERGENCE; EQUATIONS; SCHEMES; MODELS; SYSTEM; FLOWS;
D O I
10.4208/cicp.OA-2019-0006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
There is a large literature of numerical methods for phase field models from materials science. The prototype models are the Allen-Cahn and Cahn-Hilliard equations. We present four benchmark problems for these equations, with numerical results validated using several computational methods with different spatial and temporal discretizations. Our goal is to provide the scientific community with a reliable reference point for assessing the accuracy and reliability of future software for this important class of problem.
引用
收藏
页码:947 / 972
页数:26
相关论文
共 49 条
[1]   CONVERGENCE OF THE CAHN-HILLIARD EQUATION TO THE HELE-SHAW MODEL [J].
ALIKAKOS, ND ;
BATES, PW ;
CHEN, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (02) :165-205
[2]   Periodic traveling waves and locating oscillating patterns in multidimensional domains [J].
Alikakos, ND ;
Bates, PW ;
Chen, XF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (07) :2777-2805
[3]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[4]  
[Anonymous], 1993, LECT NOTES EC MATH S
[5]  
Bates P., 2000, J GEOM ANAL, V10, P575
[6]   SPECTRAL COMPARISON PRINCIPLES FOR THE CAHN-HILLIARD AND PHASE-FIELD EQUATIONS, AND TIME SCALES FOR COARSENING [J].
BATES, PW ;
FIFE, PC .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :335-348
[7]  
Bollada P., 2015, J COMPUTATIONAL PHYS, V287
[8]   Simulations of three-dimensional dendritic growth using a coupled thermo-solutal phase-field model [J].
Bollada, P. C. ;
Goodyer, C. E. ;
Jimack, P. K. ;
Mullis, A. M. .
APPLIED PHYSICS LETTERS, 2015, 107 (05)
[9]   Preconditioning of a Coupled Cahn-Hilliard Navier-Stokes System [J].
Bosch, Jessica ;
Kahle, Christian ;
Stoll, Martin .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (02) :603-628
[10]  
Broutman D., 1998, J FLUID MECH, V360, P375