NEW EXAMPLES OF CALABI-YAU 3-FOLDS AND GENUS ZERO SURFACES

被引:3
作者
Bini, Gilberto [1 ]
Favale, Filippo F. [2 ]
Neves, Jorge [3 ]
Pignatelli, Roberto [4 ]
机构
[1] Univ Milan, Dept Math, I-20133 Milan, Italy
[2] Univ Pavia, Dept Math, I-27100 Pavia, Italy
[3] Univ Coimbra, Dept Math, CMUC, P-3001501 Coimbra, Portugal
[4] Univ Trento, Dept Math, I-38123 Trento, Italy
关键词
Calabi-Yau; 3-folds; surfaces of genus zero; GENERAL TYPE; PRODUCT; P(G)=0;
D O I
10.1142/S0219199713500107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify the subgroups of the automorphism group of the product of four projective lines admitting an invariant anticanonical smooth divisor on which the action is free. As a first application, we describe new examples of Calabi-Yau 3-folds with small Hodge numbers. In particular, the Picard number is 1 and the number of moduli is 5. Furthermore, the fundamental group is nontrivial. We also construct a new family of minimal surfaces of general type with geometric genus zero, K-2 = 3 and fundamental group of order 16. We show that this family dominates an irreducible component of dimension 4 of the moduli space of the surfaces of general type.
引用
收藏
页数:20
相关论文
共 24 条
[1]  
[Anonymous], SURFACES PG 0 UNPUB
[2]  
[Anonymous], 2012, PREPRINT
[3]   A LEFSCHETZ FIXED POINT FORMULA FOR ELLIPTIC COMPLEXES .2. APPLICATIONS [J].
ATIYAH, MF ;
BOTT, R .
ANNALS OF MATHEMATICS, 1968, 88 (03) :451-&
[4]   THE CLASSIFICATION OF MINIMAL PRODUCT-QUOTIENT SURFACES WITH pg=0 [J].
Bauer, I. ;
Pignatelli, R. .
MATHEMATICS OF COMPUTATION, 2012, 81 (280) :2389-2418
[5]  
Bauer I., 2010, PREPRINT
[6]   Surfaces of general type with geometric genus zero: a survey [J].
Bauer, Ingrid ;
Catanese, Fabrizio ;
Pignatelli, Roberto .
COMPLEX AND DIFFERENTIAL GEOMETRY, 2011, 8 :1-+
[7]  
Beauville A., 1999, NEW TRENDS ALGEBRAIC, P13
[8]  
Bini G, 2012, ADV THEOR MATH PHYS, V16, P887
[9]  
Braun V., 2011, PREPRINT
[10]   A three-generation Calabi-Yau manifold with small Hodge numbers [J].
Braun, Volker ;
Candelas, Philip ;
Davies, Rhys .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2010, 58 (4-5) :467-502