Lump and rogue waves for the variable-coefficient Kadomtsev-Petviashvili equation in a fluid

被引:19
作者
Jia, Xiao-Yue
Tian, Bo [1 ]
Du, Zhong
Sun, Yan
Liu, Lei
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2018年 / 32卷 / 10期
基金
中国国家自然科学基金;
关键词
Fluid; variable-coefficient Kadomtsev-Petviashvili equation; lump; rogue wave; soliton; NONLINEAR SCHRODINGER-EQUATION; BACKLUND TRANSFORMATION; SOLITONS; PAIR;
D O I
10.1142/S0217984918500860
中图分类号
O59 [应用物理学];
学科分类号
摘要
Under investigation in this paper is the variable-coefficient Kadomtsev-Petviashvili equation, which describes the long waves with small amplitude and slow dependence on the transverse coordinate in a single-layer shallow fluid. Employing the bilinear form and symbolic computation, we obtain the lump, mixed lump-stripe soliton and mixed rogue wave-stripe soliton solutions. Discussions indicate that the variable coefficients are related to both the lump soliton's velocity and amplitude. Mixed lump-stripe soliton solutions display two different properties, fusion and fission. Mixed rogue wave-stripe soliton solutions show that a rogue wave arises from one of the stripe solitons and disappears into the other. When the time approaches 0, rogue wave's energy reaches the maximum. Interactions between a lump soliton and one-stripe soliton, and between a rogue wave and a pair of stripe solitons, are shown graphically.
引用
收藏
页数:12
相关论文
共 42 条
[21]   Solitons, Backlund transformation and Lax pair for a (2+1)-dimensional Broer-Kaup-Kupershmidt system in the shallow water of uniform depth [J].
Lan, Zhong-Zhou ;
Gao, Yi-Tian ;
Yang, Jin-Wei ;
Su, Chuan-Qi ;
Mao, Bing-Qing .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 :360-372
[22]   Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation [J].
Lu, Xing ;
Chen, Shou-Ting ;
Ma, Wen-Xiu .
NONLINEAR DYNAMICS, 2016, 86 (01) :523-534
[23]  
Matveev V.B., 1991, Darboux Transformations and Solitons
[24]   Painleve analysis and bright solitary waves of the higher-order nonlinear Schrodinger equation containing third-order dispersion and self-steepening term [J].
Mihalache, D ;
Truta, N ;
Crasovan, LC .
PHYSICAL REVIEW E, 1997, 56 (01) :1064-1070
[25]  
Muller P., 2005, Oceanography, V18, P66, DOI DOI 10.5670/oceanog.2005.30
[26]   SOLITON SOLUTION OF 3 DIFFERENTIAL-DIFFERENCE EQUATIONS IN WRONSKIAN FORM [J].
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 99 (6-7) :281-286
[27]   CONSERVATION LAWS OF SINE-GORDON EQUATION [J].
SANUKI, H ;
KONNO, K .
PHYSICS LETTERS A, 1974, A 48 (03) :221-222
[28]   Capillary Rogue Waves [J].
Shats, M. ;
Punzmann, H. ;
Xia, H. .
PHYSICAL REVIEW LETTERS, 2010, 104 (10)
[29]   Optical rogue waves [J].
Solli, D. R. ;
Ropers, C. ;
Koonath, P. ;
Jalali, B. .
NATURE, 2007, 450 (7172) :1054-U7
[30]   Solitons for a generalized sixth-order variable-coefficient nonlinear Schrodinger equation for the attosecond pulses in an optical fiber [J].
Su, Jing-Jing ;
Gao, Yi-Tian ;
Jia, Shu-Liang .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 50 :128-141