Lump and rogue waves for the variable-coefficient Kadomtsev-Petviashvili equation in a fluid

被引:19
作者
Jia, Xiao-Yue
Tian, Bo [1 ]
Du, Zhong
Sun, Yan
Liu, Lei
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2018年 / 32卷 / 10期
基金
中国国家自然科学基金;
关键词
Fluid; variable-coefficient Kadomtsev-Petviashvili equation; lump; rogue wave; soliton; NONLINEAR SCHRODINGER-EQUATION; BACKLUND TRANSFORMATION; SOLITONS; PAIR;
D O I
10.1142/S0217984918500860
中图分类号
O59 [应用物理学];
学科分类号
摘要
Under investigation in this paper is the variable-coefficient Kadomtsev-Petviashvili equation, which describes the long waves with small amplitude and slow dependence on the transverse coordinate in a single-layer shallow fluid. Employing the bilinear form and symbolic computation, we obtain the lump, mixed lump-stripe soliton and mixed rogue wave-stripe soliton solutions. Discussions indicate that the variable coefficients are related to both the lump soliton's velocity and amplitude. Mixed lump-stripe soliton solutions display two different properties, fusion and fission. Mixed rogue wave-stripe soliton solutions show that a rogue wave arises from one of the stripe solitons and disappears into the other. When the time approaches 0, rogue wave's energy reaches the maximum. Interactions between a lump soliton and one-stripe soliton, and between a rogue wave and a pair of stripe solitons, are shown graphically.
引用
收藏
页数:12
相关论文
共 42 条
[1]  
Ablowitz M., 1991, Soliton, Nonlinear Evolution Equations and Inverse Scattering
[2]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[3]   Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions [J].
Bailung, H. ;
Sharma, S. K. ;
Nakamura, Y. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[4]   Matter rogue waves [J].
Bludov, Yu. V. ;
Konotop, V. V. ;
Akhmediev, N. .
PHYSICAL REVIEW A, 2009, 80 (03)
[5]   Solitons for the (3+1)-dimensional variable-coefficient coupled nonlinear Schrodinger equations in an optical fiber [J].
Deng, Gao-Fu ;
Gao, Yi-Tian .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 109 :345-359
[6]   Integrability, solitons, periodic and travelling waves of a generalized (3+1)-dimensional variable-coefficient nonlinear-wave equation in liquid with gas bubbles [J].
Deng, Gao-Fu ;
Gao, Yi-Tian .
EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (06)
[7]   Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium [J].
Ganshin, A. N. ;
Efimov, V. B. ;
Kolmakov, G. V. ;
Mezhov-Deglin, L. P. ;
McClintock, P. V. E. .
PHYSICAL REVIEW LETTERS, 2008, 101 (06)
[8]   Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation [J].
Gao, Xin-Yi .
APPLIED MATHEMATICS LETTERS, 2017, 73 :143-149
[9]   Backlund transformation and shock-wave-type solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid mechanics [J].
Gao, Xin-Yi .
OCEAN ENGINEERING, 2015, 96 :245-247
[10]   On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations [J].
Gao, Yi-Tian ;
Tian, Bo .
EPL, 2007, 77 (01)