Edge coloring of planar graphs which any two short cycles are adjacent at most once

被引:4
作者
Ni, Wei-Ping [1 ]
Wu, Jian-Liang [2 ]
机构
[1] Zaozhuang Univ, Sch Math & Stat, Zaozhuang 277160, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
关键词
Planar graph; Edge coloring; Maximum degree; Cycle;
D O I
10.1016/j.tcs.2013.11.011
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
By applying discharging methods and properties of critical graphs, we proved that every simple planar graph G is of class 1 if Delta(G) = 6 and any k-cycle is adjacent to at most one k-cycle for some k (k = 3, 4, 5). (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 138
页数:6
相关论文
共 14 条
[1]  
[Anonymous], 2007, SOM RES EDG PART PLA
[2]   Some sufficient conditions for a planar graph of maximum degree six to be Class 1 [J].
Bu, Yuehua ;
Wang, Weifan .
DISCRETE MATHEMATICS, 2006, 306 (13) :1440-1445
[3]  
Chen Y., 2007, J ZHEJIANG NORMAL U, V30, P416
[4]  
FIORINI S, 1977, EDGE COLOURINGS GRAP
[5]   Edge Coloring of embedded graphs with large girth [J].
Li, XC ;
Luo, R .
GRAPHS AND COMBINATORICS, 2003, 19 (03) :393-401
[6]  
Ni W., 2010, J E CHINA NORM U NAT, V153, P20
[7]  
Ni WP, 2012, ARS COMBINATORIA, V105, P247
[8]  
[倪伟平 Ni Weiping], 2011, [南京师大学报. 自然科学版, Journal of Nanjing Normal University. Natural Science], V34, P19
[9]  
[倪伟平 Ni Weiping], 2011, [华东师范大学学报. 自然科学版, Journal of East China Normal University. Natural Science], P32
[10]   Planar graphs of maximum degree seven are class I [J].
Sanders, DP ;
Zhao, Y .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 83 (02) :201-212