Fast calculation software for modified Look-Locker inversion recovery (MOLLI) T1 mapping

被引:4
作者
Kim, Yoon-Chul [1 ]
Kim, Khu Rai [2 ]
Lee, Hyelee [3 ]
Choe, Yeon Hyeon [4 ,5 ]
机构
[1] Sungkyunkwan Univ, Samsung Med Ctr, Clin Res Inst, Sch Med, Seoul, South Korea
[2] Sogang Univ, Dept Elect Engn, Seoul, South Korea
[3] Sogang Univ, Dept Math, Seoul, South Korea
[4] Sungkyunkwan Univ, Dept Radiol, Sch Med, 81 Ilwon Ro, Seoul 06351, South Korea
[5] Sungkyunkwan Univ, HVSI Imaging Ctr, Heart Vasc Stroke Inst, Samsung Med Ctr,Sch Med, 81 Ilwon Ro, Seoul 06351, South Korea
基金
新加坡国家研究基金会;
关键词
MRI; Heart; T1; mapping; Parameter estimation; CARDIOVASCULAR MAGNETIC-RESONANCE; QUANTIFICATION;
D O I
10.1186/s12880-021-00558-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background The purpose of this study was to develop a software tool and evaluate different T1 map calculation methods in terms of computation time in cardiac magnetic resonance imaging. Methods The modified Look-Locker inversion recovery (MOLLI) sequence was used to acquire multiple inversion time (TI) images for pre- and post-contrast T1 mapping. The T1 map calculation involved pixel-wise curve fitting based on the T1 relaxation model. A variety of methods were evaluated using data from 30 subjects for computational efficiency: MRmap, python Levenberg-Marquardt (LM), python reduced-dimension (RD) non-linear least square, C++ single- and multi-core LM, and C++ single- and multi-core RD. Results Median (interquartile range) computation time was 126 s (98-141) for the publicly available software MRmap, 261 s (249-282) for python LM, 77 s (74-80) for python RD, 3.4 s (3.1-3.6) for C++ multi-core LM, and 1.9 s (1.9-2.0) for C++ multi-core RD. The fastest C++ multi-core RD and the publicly available MRmap showed good agreement of myocardial T1 values, resulting in 95% Bland-Altman limits of agreement of (- 0.83 to 0.58 ms) and (- 6.57 to 7.36 ms) with mean differences of - 0.13 ms and 0.39 ms, for the pre- and post-contrast, respectively. Conclusion The C++ multi-core RD was the fastest method on a regular eight-core personal computer for pre- or post-contrast T1 map calculation. The presented software tool (fT1fit) facilitated rapid T1 map and extracellular volume fraction map calculations.
引用
收藏
页数:10
相关论文
共 30 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] A feasible and automatic free tool for T1 and ECV mapping
    Altabella, Luisa
    Borrazzo, Cristian
    Carni, Marco
    Galea, Nicola
    Francone, Marco
    Fiorelli, Andrea
    Di Castro, Elisabetta
    Catalano, Carlo
    Carbone, Iacopo
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 33 : 47 - 55
  • [3] Bakker C G, 1984, IEEE Trans Med Imaging, V3, P197, DOI 10.1109/TMI.1984.4307681
  • [4] A Robust Methodology for In Vivo T1 Mapping
    Barral, Joelle K.
    Gudmundson, Erik
    Stikov, Nikola
    Etezadi-Amoli, Maryam
    Stoica, Petre
    Nishimura, Dwight G.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2010, 64 (04) : 1057 - 1067
  • [5] Quantitative Magnetization Transfer Imaging Made Easy with qMTLab: Software for Data Simulation, Analysis, and Visualization
    Cabana, Jean-Francois
    Gu, Ye
    Boudreau, Mathieu
    Levesque, Ives R.
    Atchia, Yaaseen
    Sled, John G.
    Narayanan, Sridar
    Arnold, Douglas L.
    Pike, G. Bruce
    Cohen-Adad, Julien
    Duval, Tanguy
    Manh-Tung Vuong
    Stikov, Nikola
    [J]. CONCEPTS IN MAGNETIC RESONANCE PART A, 2015, 44A (05) : 263 - 277
  • [6] Towards accurate and precise T 1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions
    Cameron, Donnie
    Vassiliou, Vassilios S.
    Higgins, David M.
    Gatehouse, Peter D.
    [J]. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2018, 31 (01) : 143 - 163
  • [7] Chandra R., 2001, Parallel programing in OpenMP, DOI DOI 10.5555/355074
  • [8] 3D Myocardial T1 Mapping at 3T Using Variable Flip Angle Method: Pilot Study
    Clique, Helene
    Cheng, Hai-Ling Margaret
    Marie, Pierre-Yves
    Felblinger, Jacques
    Beaumont, Marine
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (02) : 823 - 829
  • [9] Rapid MR relaxometry using deep learning: An overview of current techniques and emerging trends
    Feng, Li
    Ma, Dan
    Liu, Fang
    [J]. NMR IN BIOMEDICINE, 2022, 35 (04)
  • [10] Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review
    Haaf, Philip
    Garg, Pankaj
    Messroghli, Daniel R.
    Broadbent, David A.
    Greenwood, John P.
    Plein, Sven
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2016, 18