The structure of ultrafine entanglement witnesses

被引:4
作者
Gachechiladze, Mariami [1 ]
Wyderka, Nikolai [1 ]
Guehne, Otfried [1 ]
机构
[1] Univ Siegen, Nat Wissensch Tech Fak, Walter Flex Str 3, D-57068 Siegen, Germany
关键词
quantum information theory; entanglement witness; entanglement detection;
D O I
10.1088/1751-8121/aad3dc
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An entanglement witness is an observable with the property that a negative expectation value signals the presence of entanglement. The question arises how a witness can be improved if the expectation value of a second observable is known, and methods for doing this have recently been discussed as so-called ultrafine entanglement witnesses. We present several results on the characterization of entanglement given the expectation values of two observables. First, we explain that this problem can naturally be tackled with the method of the Legendre transformation, leading even to a quantification of entanglement. Second, we present necessary and sufficient conditions that two product observables are able to detect entanglement. Finally, we explain some fallacies in the original construction of ultrafine entanglement witnesses (Shahandeh et al 2017 Phys. Rev. Lett. 118 110502).
引用
收藏
页数:11
相关论文
共 15 条
[11]   Ultrafine Entanglement Witnessing [J].
Shahandeh, Farid ;
Ringbauer, Martin ;
Loredo, Juan C. ;
Ralph, Timothy C. .
PHYSICAL REVIEW LETTERS, 2017, 118 (11)
[12]   Optimization of ultrafine entanglement witnesses [J].
Shen, Shu-Qian ;
Xu, Ti-Run ;
Fei, Shao-Ming ;
Li-Jost, Xianqing ;
Li, Ming .
PHYSICAL REVIEW A, 2018, 97 (03)
[13]  
Stingl M, 1997, LECT NOTES
[14]   Entanglement detection in the stabilizer formalism -: art. no. 022340 [J].
Tóth, G ;
Gühne, O .
PHYSICAL REVIEW A, 2005, 72 (02)
[15]   Geometric measure of entanglement and applications to bipartite and multipartite quantum states [J].
Wei, TC ;
Goldbart, PM .
PHYSICAL REVIEW A, 2003, 68 (04) :12