Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems

被引:122
作者
Joshi, M.
Seidel-Morgenstern, A.
Kremling, A.
机构
[1] Max Planck Inst Dynam Komplexer Tech Syst, Syst Biol Grp, D-39106 Magdeburg, Germany
[2] Otto Von Guericke Univ, Inst Verfahrenstech, Magdeburg, Germany
关键词
parameter confidence interval; Fisher-Information-Matrix; bootstrap approach;
D O I
10.1016/j.ymben.2006.04.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A quantitative description of dynamical systems requires the estimation of uncertain kinetic parameters and an analysis of their precision. A method frequently used to describe the confidence intervals of estimated parameters is based on the Fisher-Information-Matrix. The application of this traditional method has two important shortcomings: (i) it gives only lower bounds for the variance of a parameter if the solution of the underlying model equations is non-linear in parameters. (ii) The resulting confidence interval is symmetric with respect to the estimated parameter. Here, we show that by applying the bootstrap method a better approximation of (possibly) asymmetric confidence intervals for parameters could be obtained. In contrast to previous applications devoted to non-parametric problems, a dynamical model describing a bio-chemical network is used to evaluate the method. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:447 / 455
页数:9
相关论文
共 15 条
[1]   Statistical tools for optimal dynamic model building [J].
Asprey, SP ;
Macchietto, S .
COMPUTERS & CHEMICAL ENGINEERING, 2000, 24 (2-7) :1261-1267
[2]   OPTIMAL EXPERIMENTAL-DESIGN FOR PARAMETER-ESTIMATION IN UNSTRUCTURED GROWTH-MODELS [J].
BALTES, M ;
SCHNEIDER, R ;
STURM, C ;
REUSS, M .
BIOTECHNOLOGY PROGRESS, 1994, 10 (05) :480-488
[3]   On the design of optimally informative dynamic experiments for model discrimination in multiresponse nonlinear situations [J].
Chen, BH ;
Asprey, SP .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (07) :1379-1390
[4]  
DICICCIO TJ, 1996, STAT SCI, V11
[5]  
Efron B., 1994, INTRO BOOTSTRAP, DOI DOI 10.1201/9780429246593
[6]   Simulation methods for optimal experimental design in systems biology [J].
Faller, D ;
Klingmüller, U ;
Timmer, J .
SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2003, 79 (12) :717-725
[7]   ON THE HISTOGRAM AS A DENSITY ESTIMATOR - L2 THEORY [J].
FREEDMAN, D ;
DIACONIS, P .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (04) :453-476
[8]   The organization of metabolic reaction networks. III. Application for diauxic growth on glucose and lactose [J].
Kremling, A ;
Bettenbrock, K ;
Laube, B ;
Jahreis, K ;
Lengeler, JW ;
Gilles, ED .
METABOLIC ENGINEERING, 2001, 3 (04) :362-379
[9]  
Ljung L., 1999, SYSTEM IDENTIFICATIO
[10]   Parameter estimation in biochemical pathways: A comparison of global optimization methods [J].
Moles, CG ;
Mendes, P ;
Banga, JR .
GENOME RESEARCH, 2003, 13 (11) :2467-2474