Effects of Zn content on microstructures and mechanical properties of Mg-Zn-RE-Sn-Zr-Ca alloys

被引:12
作者
Chen, T. J. [1 ]
Zhang, D. H. [1 ]
Wang, W. [1 ]
Ma, Y. [1 ]
Hao, Y. [1 ]
机构
[1] Lanzhou Univ Technol, Key Lab Gansu Adv Nonferrous Met Mat, Lanzhou 730050, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2014年 / 607卷
关键词
Mg-Zn-RE alloy; Microstructure; Mechanical properties; Ternary phase; Fracture regime; ICOSAHEDRAL PHASE; MAGNESIUM ALLOY; Y ALLOYS; W-PHASE; ND;
D O I
10.1016/j.msea.2014.03.111
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The effects of Zn content on microstructures and mechanical properties of Mg-Zn-RE alloys have been investigated. The results indicate that RE-rich phases will change from the MgY and Mg12Nd binary phases in turn to Z (Mg12ZnRE), Z+W (Mg3Zn3RE2), W and W+I (Mg3Zn6RE) ternary phases as the Zn content increases from 0% to 4%. The grain size decreases when the Zn content increases from 0% to 2% and then increases, which is attributed to the variation of growth restriction factor resulted from the phase changes. The hardness continuously increases due to the formation of the ternary phases and their amount increase. The UTS and elongation first increase as the Zn content increases within the range of 0-2% and then decrease. The W phase is an ideal strengthening phase because the grain bonding strength of the unique W phase-containing alloy is higher than that of the Z or Z+W phase-containing alloy. Shrinkage porosities are easy to generate and the ternary phases distribute more and more continuously due to their amount increase when the Zn content exceeds 2%. The fracture regime changes from intergranular mode to transgranular mode as the Zn content increases from 0% to 2%, and then turns into transgranular mode again. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 27
页数:11
相关论文
共 29 条
[1]   Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles [J].
Bae, DH ;
Kim, SH ;
Kim, DH ;
Kim, WT .
ACTA MATERIALIA, 2002, 50 (09) :2343-2356
[2]   Development of a new magnesium alloy ZW21 [J].
Chen, T. J. ;
Wang, W. ;
Zhang, D. H. ;
Ma, Y. ;
Hao, Y. .
MATERIALS & DESIGN, 2013, 44 :555-565
[3]   Effects of heat treatment on microstructure and mechanical properties of ZW21 magnesium alloy [J].
Chen, T. J. ;
Wang, W. ;
Zhang, D. H. ;
Ma, Y. ;
Hao, Y. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 546 :28-40
[4]  
Dahle A.K., 2001, Journal of Light Metals, V1, P61
[5]   Recycling automotive magnesium scrap [J].
Hanko, G ;
Antrekowitsch, H ;
Ebner, P .
JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 2002, 54 (02) :51-54
[6]   Solidification pathways and constituent phases of Mg-Zn-Y-Zr alloys [J].
Huang, Z. H. ;
Liang, S. M. ;
Chen, R. S. ;
Han, E. H. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 468 (1-2) :170-178
[7]   Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys [J].
Lee, JY ;
Do, HK ;
Lim, HK ;
Kim, DH .
MATERIALS LETTERS, 2005, 59 (29-30) :3801-3805
[8]   Effect of Nd and Y addition on microstructure and mechanical properties of as-cast Mg-Zn-Zr alloy [J].
Li, Qiang ;
Wang, Qudong ;
Wang, Yingxin ;
Zeng, Xiaoqin ;
Ding, Wenjiang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 427 (1-2) :115-123
[9]  
Li W.X., 2005, Magnesium and Magnesium Alloys
[10]   Effect of Zn concentration on the microstructures and mechanical properties of extruded Mg-7Y-4Gd-0.4Zr alloys [J].
Liu, Ke ;
Zhang, Jinghuai ;
Sun, Wei ;
Qiu, Xin ;
Lu, Huayi ;
Tang, Dingxiang ;
Rokhlin, L. L. ;
Elkin, F. M. ;
Meng, Jian .
JOURNAL OF MATERIALS SCIENCE, 2009, 44 (01) :74-83