This paper applies a robust statistical scheme to the problem of unsupervised learning of high-dimensional data. We develop, analyze, and apply a new finite mixture model based on a generalization of the Dirichlet distribution. The generalized Dirichlet distribution has a more general covariance structure than the Dirichlet distribution and offers high flexibility and ease of use for the approximation of both symmetric and asymmetric distributions. We show that the mathematical properties of this distribution allow high-dimensional modeling without requiring dimensionality reduction and, thus, without a loss of information. This makes the generalized Dirichlet distribution more practical and useful. We propose a hybrid stochastic expectation maximization algorithm (HSEM) to estimate the parameters of the generalized Dirichlet mixture. The algorithm is called stochastic because it contains a step in which the data elements are assigned randomly to components in order to avoid convergence to a saddle point. The adjective "hybrid" is justified by the introduction of a Newton-Raphson step. Moreover, the HSEM algorithm autonomously selects the number of components by the introduction of an agglomerative term. The performance of our method is tested by the classification of several pattern-recognition data sets. The generalized Dirichlet mixture is also applied to the problems of image restoration, image object recognition and texture image database summarization for efficient retrieval. For the texture image summarization problem, results are reported for the Vistex texture image database from the MIT Media Lab.
机构:
Univ Tenaga Nasl UNITEN, Inst Sustainable Energy ISE, Kajang 43000, MalaysiaUniv Tenaga Nasl UNITEN, Inst Sustainable Energy ISE, Kajang 43000, Malaysia
Alkawsi, Gamal
Al-amri, Redhwan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wales Trinity St David, Inst Educ & Humanities, Ctr Profess Learning & Leadership, Swansea, WalesUniv Tenaga Nasl UNITEN, Inst Sustainable Energy ISE, Kajang 43000, Malaysia
Al-amri, Redhwan
Baashar, Yahia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Sabah UMS, Fac Comp & Informat, Labuan, MalaysiaUniv Tenaga Nasl UNITEN, Inst Sustainable Energy ISE, Kajang 43000, Malaysia
Baashar, Yahia
Ghorashi, Sara
论文数: 0引用数: 0
h-index: 0
机构:
Princess Nourah bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, POB 84428, Riyadh 84428, Saudi ArabiaUniv Tenaga Nasl UNITEN, Inst Sustainable Energy ISE, Kajang 43000, Malaysia
Ghorashi, Sara
Alabdulkreem, Eatedal
论文数: 0引用数: 0
h-index: 0
机构:
Princess Nourah bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, POB 84428, Riyadh 84428, Saudi ArabiaUniv Tenaga Nasl UNITEN, Inst Sustainable Energy ISE, Kajang 43000, Malaysia
Alabdulkreem, Eatedal
Tiong, Sieh Kiong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tenaga Nasl UNITEN, Inst Sustainable Energy ISE, Kajang 43000, MalaysiaUniv Tenaga Nasl UNITEN, Inst Sustainable Energy ISE, Kajang 43000, Malaysia
机构:
Univ Teknol Malaysia, Malaysia Japan Int Inst Technol, Kuala Lumpur, Malaysia
Koya Univ, Directorate Informat Technol, Koya KOY45, Koya, Kurdistan Regio, IraqUniv Teknol Malaysia, Malaysia Japan Int Inst Technol, Kuala Lumpur, Malaysia
Hameed, Shilan S.
Hassan, Wan Haslina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Malaysia Japan Int Inst Technol, Kuala Lumpur, MalaysiaUniv Teknol Malaysia, Malaysia Japan Int Inst Technol, Kuala Lumpur, Malaysia
Hassan, Wan Haslina
Latiff, Liza Abdul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Fak Teknol & Informat Razak, Kuala Lumpur, MalaysiaUniv Teknol Malaysia, Malaysia Japan Int Inst Technol, Kuala Lumpur, Malaysia
Latiff, Liza Abdul
Muhammadsharif, Fahmi F.
论文数: 0引用数: 0
h-index: 0
机构:
Koya Univ, Dept Phys, Fac Sci & Hlth, Koya KOY45, Koya, Kurdistan Regio, IraqUniv Teknol Malaysia, Malaysia Japan Int Inst Technol, Kuala Lumpur, Malaysia