Optimising the the Volgenant-Jonker algorithm for approximating graph edit distance

被引:6
作者
Jones, William [1 ]
Chawdhary, Aziem [1 ]
King, Andy [1 ]
机构
[1] Univ Kent, Sch Comp, Canterbury CT2 7NF, Kent, England
基金
英国工程与自然科学研究理事会;
关键词
Attributed graphs; Graph edit distance; Volgenate-Jonker algorithm; ASSIGNMENT; COMPUTATION;
D O I
10.1016/j.patrec.2016.07.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although it is agreed that the Volgenant-Jonker (VJ) algorithm provides a fast way to approximate graph edit distance (GED), until now nobody has reported how the VJ algorithm can be tuned for this task. To this end, we revisit VJ and propose a series of refinements that improve both the speed and memory footprint without sacrificing accuracy in the GED approximation. We quantify the effectiveness of these optimisations by measuring distortion between control-flow graphs: a problem that arises in malware matching, We also document an unexpected behavioural property of VJ ill which the time required to find shortest paths to unassigned vertices decreases as graph size increases, and explain how this phenomenon relates to the birthday paradox. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 54
页数:8
相关论文
共 50 条
  • [41] Computing graph edit distance on quantum devices
    Incudini, Massimiliano
    Tarocco, Fabio
    Mengoni, Riccardo
    Di Pierro, Alessandra
    Mandarino, Antonio
    [J]. QUANTUM MACHINE INTELLIGENCE, 2022, 4 (02)
  • [42] Computing Graph Edit Distance via Neural Graph Matching
    Piao, Chengzhi
    Xu, Tingyang
    Sun, Xiangguo
    Rong, Yu
    Zhao, Kangfei
    Cheng, Hong
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 16 (08): : 1817 - 1829
  • [43] Graph Edit Distance Compacted Search Tree
    Chegrane, Ibrahim
    Hocine, Imane
    Yahiaoui, Said
    Bendjoudi, Ahcene
    Nouali-Taboudjemat, Nadia
    [J]. SIMILARITY SEARCH AND APPLICATIONS (SISAP 2022), 2022, 13590 : 181 - 189
  • [44] Comparing heuristics for graph edit distance computation
    David B. Blumenthal
    Nicolas Boria
    Johann Gamper
    Sébastien Bougleux
    Luc Brun
    [J]. The VLDB Journal, 2020, 29 : 419 - 458
  • [45] Efficient Parallel Computing of Graph Edit Distance
    Wang, Ran
    Fang, Yixiang
    Feng, Xing
    [J]. 2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW 2019), 2019, : 233 - 240
  • [46] Graph edit distance from spectral seriation
    Robles-Kelly, A
    Hancock, ER
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (03) : 365 - 378
  • [47] Computing graph edit distance on quantum devices
    Massimiliano Incudini
    Fabio Tarocco
    Riccardo Mengoni
    Alessandra Di Pierro
    Antonio Mandarino
    [J]. Quantum Machine Intelligence, 2022, 4
  • [48] A Survey on Applications of Bipartite Graph Edit Distance
    Stauffer, Michael
    Tschachtli, Thomas
    Fischer, Andreas
    Riesen, Kaspar
    [J]. GRAPH-BASED REPRESENTATIONS IN PATTERN RECOGNITION (GBRPR 2017), 2017, 10310 : 242 - 252
  • [49] Improved local search for graph edit distance
    Boria, Nicolas
    Blumenthal, David B.
    Bougleux, Sebastien
    Brun, Luc
    [J]. PATTERN RECOGNITION LETTERS, 2020, 129 : 19 - 25
  • [50] MATA*: Combining Learnable Node Matching with A* Algorithm for Approximate Graph Edit Distance Computation
    Liu, Junfeng
    Zhou, Min
    Ma, Shuai
    Pan, Lujia
    [J]. PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 1503 - 1512