A DERIVATION OF THE VLASOV-STOKES SYSTEM FOR AEROSOL FLOWS FROM THE KINETIC THEORY OF BINARY GAS MIXTURES

被引:15
作者
Bernard, Etienne [1 ]
Desvillettes, Laurent [2 ]
Golse, Francois [3 ,4 ]
Ricci, Valeria [5 ]
机构
[1] Univ Paris Diderot, IGN LAREG, Batiment Lamarck A,5 Rue Thomas Mann, F-75205 Paris 13, France
[2] UPMC Univ Paris 06, Univ Paris Diderot, Sorbonne Paris Cite,Sorbonne Univ,CNRS, UMR CNRS 7586,Inst Math Jussieu Paris Rive Gauche, F-75013 Paris, France
[3] Univ Paris Saclay, Ecole Polytech, CMLS, F-91128 Palaiseau, France
[4] Univ Paris Saclay, CNRS, F-91128 Palaiseau, France
[5] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-190123 Palermo, Italy
关键词
Vlasov-Stokes system; Boltzmann equation; hydrodynamic limit; aerosols; sprays; gas mixture; RAREFIED-GAS; HYDRODYNAMIC LIMIT; PARTICLES REGIME; WEAK SOLUTIONS; UNIFORM-FLOW; EQUATIONS; FLUID; TRANSPORT; SPHERE; MODEL;
D O I
10.3934/krm.2018003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we formally derive the thin spray equation for a steady Stokes gas (i.e. the equation consists in a coupling between a kinetic Vlasov type - equation for the dispersed phase and a - steady - Stokes equation for the gas). Our starting point is a system of Boltzmann equations for a binary gas mixture. The derivation follows the procedure already outlined in [Bernard, Desvillettes, Golse, Ricci, Commun. Math.Sci.,15 (2017), 1703-1741] where the evolution of the gas is governed by the Navier-Stokes equation.
引用
收藏
页码:43 / 69
页数:27
相关论文
共 37 条
[11]   Global well-posedness and large-time behavior for the inhomogeneous Vlasov-Navier-Stokes equations [J].
Choi, Young-Pil ;
Kwon, Bongsuk .
NONLINEARITY, 2015, 28 (09) :3309-3336
[12]  
Cioranescu D., 1982, NONLINEAR PARTIAL DI, V60, P98
[13]   The asymptotics of collision operators for two species of particles of disparate masses [J].
Degond, P ;
LucquinDesreux, B .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (03) :405-436
[14]   Existence of weak solutions for the motion of rigid bodies in a viscous fluid [J].
Desjardins, B ;
Esteban, MJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 146 (01) :59-71
[15]  
Desvillettes L., 1994, ADV KINETIC THEORY C, V22, P191
[16]   The mean-field limit for solid particles in a Navier-Stokes flow [J].
Desvillettes, Laurent ;
Golse, Francois ;
Ricci, Valeria .
JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (05) :941-967
[17]   Some Aspects of the Asymptotics Leading from Gas-Particles Equations Towards Multiphase Flows Equations [J].
Desvillettes, Laurent ;
Mathiaud, Julien .
JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (01) :120-141
[18]   An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte Carlo method [J].
Gallis, MA ;
Torczynski, JR ;
Rader, DJ .
PHYSICS OF FLUIDS, 2001, 13 (11) :3482-3492
[19]   Regularity Issues in the Problem of Fluid Structure Interaction [J].
Gerard-Varet, David ;
Hillairet, Matthieu .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (02) :375-407
[20]  
Golse F., 2013, SPRINGER P MATH STAT, V75, P3