A DERIVATION OF THE VLASOV-STOKES SYSTEM FOR AEROSOL FLOWS FROM THE KINETIC THEORY OF BINARY GAS MIXTURES

被引:12
作者
Bernard, Etienne [1 ]
Desvillettes, Laurent [2 ]
Golse, Francois [3 ,4 ]
Ricci, Valeria [5 ]
机构
[1] Univ Paris Diderot, IGN LAREG, Batiment Lamarck A,5 Rue Thomas Mann, F-75205 Paris 13, France
[2] UPMC Univ Paris 06, Univ Paris Diderot, Sorbonne Paris Cite,Sorbonne Univ,CNRS, UMR CNRS 7586,Inst Math Jussieu Paris Rive Gauche, F-75013 Paris, France
[3] Univ Paris Saclay, Ecole Polytech, CMLS, F-91128 Palaiseau, France
[4] Univ Paris Saclay, CNRS, F-91128 Palaiseau, France
[5] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-190123 Palermo, Italy
关键词
Vlasov-Stokes system; Boltzmann equation; hydrodynamic limit; aerosols; sprays; gas mixture; RAREFIED-GAS; HYDRODYNAMIC LIMIT; PARTICLES REGIME; WEAK SOLUTIONS; UNIFORM-FLOW; EQUATIONS; FLUID; TRANSPORT; SPHERE; MODEL;
D O I
10.3934/krm.2018003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we formally derive the thin spray equation for a steady Stokes gas (i.e. the equation consists in a coupling between a kinetic Vlasov type - equation for the dispersed phase and a - steady - Stokes equation for the gas). Our starting point is a system of Boltzmann equations for a binary gas mixture. The derivation follows the procedure already outlined in [Bernard, Desvillettes, Golse, Ricci, Commun. Math.Sci.,15 (2017), 1703-1741] where the evolution of the gas is governed by the Navier-Stokes equation.
引用
收藏
页码:43 / 69
页数:27
相关论文
共 37 条
[2]  
[Anonymous], 1984, Forms, currents, harmonic forms
[3]   FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, D .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :323-344
[4]   A DERIVATION OF THE VLASOV-NAVIER-STOKES MODEL FOR AEROSOL FLOWS FROM KINETIC THEORY [J].
Bernard, Etienne ;
Desvillettes, Laurent ;
Golse, Francois ;
Ricci, Valeria .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (06) :1703-1741
[5]   On the analysis of a coupled kinetic-fluid model with local alignment forces [J].
Carrillo, Jose A. ;
Choi, Young-Pil ;
Karper, Trygve K. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02) :273-307
[6]  
Cercignani C., 2002, The relativistic Boltzmann equation: theory and applications
[7]  
Charles F, 2009, AIP CONF PROC, V1084, P409
[8]  
Charles F., 2009, THESIS
[9]   KINETIC MODELING OF THE TRANSPORT OF DUST PARTICLES IN A RAREFIED ATMOSPHERE [J].
Charles, Federique ;
Dellacherie, Stephane ;
Segre, Jacques .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (04)
[10]  
Choi Y.-P., 2017, J MATH PURES APPL