Sampling Constraint Satisfaction Solutions in the Local Lemma Regime

被引:13
作者
Feng, Weiming [1 ]
He, Kun [2 ,3 ]
Yin, Yitong [1 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
来源
STOC '21: PROCEEDINGS OF THE 53RD ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING | 2021年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
sampling; constraint satisfaction problem; Lovasz Local Lemma; Markov chain; ALGORITHMIC APPROACH; STOPPING-TIMES; APPROXIMATION; HYPERGRAPHS; COLORINGS;
D O I
10.1145/3406325.3451101
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a Markov chain based algorithm for sampling almost uniform solutions of constraint satisfaction problems (CSPs). Assuming a canonical setting for the Lovasz local lemma, where each constraint is violated by a small number of forbidden local configurations, our sampling algorithm is accurate in a local lemma regime, and the running time is a fixed polynomial whose dependency on n is close to linear, where n is the number of variables. Our main approach is a new technique called state compression, which generalizes the "mark/unmark" paradigm of Moitra, and can give fast local-lemma-based sampling algorithms. As concrete applications of our technique, we give the current best almost-uniform samplers for hypergraph colorings and for CNF solutions.
引用
收藏
页码:1565 / 1578
页数:14
相关论文
共 44 条
[1]   Beyond the Lovasz Local Lemma: Point to Set Correlations and Their Algorithmic Applications [J].
Achlioptas, Dimitris ;
Iliopoulos, Fotis ;
Sinclair, Alistair .
2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, :725-744
[2]   Random Walks That Find Perfect Objects and the Lovasz Local Lemma [J].
Achlioptas, Dimitris ;
Iliopoulos, Fotis .
JOURNAL OF THE ACM, 2016, 63 (03)
[3]   A PARALLEL ALGORITHMIC VERSION OF THE LOCAL LEMMA [J].
ALON, N .
RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (04) :367-378
[4]  
[Anonymous], 2009, INFORM PHYS COMPUTAT, DOI DOI 10.1093/ACPROF:OSO/9780198570837.001.0001
[5]   AN ALGORITHMIC APPROACH TO THE LOVASZ LOCAL LEMMA .1. [J].
BECK, J .
RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (04) :343-365
[6]   Accelerating simulated annealing for the permanent and combinatorial counting problems [J].
Bezakova, Ivona ;
Stefankovic, Daniel ;
Vazirani, Vijay V. ;
Vigoda, Eric .
SIAM JOURNAL ON COMPUTING, 2008, 37 (05) :1429-1454
[7]   APPROXIMATION VIA CORRELATION DECAY WHEN STRONG SPATIAL MIXING FAILS [J].
Bezakova, Ivona ;
Galanis, Andreas ;
Goldberg, Leslie Ann ;
Guo, Heng ;
Stefankovic, Daniel .
SIAM JOURNAL ON COMPUTING, 2019, 48 (02) :279-349
[8]   Path coupling using stopping times and counting independent sets and colorings in hypergraphs [J].
Bordewich, Magnus ;
Dyer, Martin ;
Karpinski, Marek .
RANDOM STRUCTURES & ALGORITHMS, 2008, 32 (03) :375-399
[9]  
Bordewich M, 2006, LECT NOTES COMPUT SC, V4051, P108, DOI 10.1007/11786986_11
[10]   Path coupling: A technique for proving rapid mixing in Markov chains [J].
Bubley, R ;
Dyer, M .
38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1997, :223-231