The higher order rogue wave solutions of the Gerdjikov-Ivanov equation

被引:97
作者
Guo, Lijuan [1 ]
Zhang, Yongshuai [1 ]
Xu, Shuwei [2 ]
Wu, Zhiwei [1 ]
He, Jingsong [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
关键词
Darboux transformation; higher order rogue wave; Gerdjikov-Ivanov equation; SELF-PHASE MODULATION; WATER-WAVES; SYSTEMS;
D O I
10.1088/0031-8949/89/03/035501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct higher order rogue wave solutions for the Gerdjikov-Ivanov equation explicitly in terms of a determinant expression. The dynamics of both soliton and non-soliton solutions is discussed. A family of solutions with distinct structures, which are new to the Gerdjikov-Ivanov equation, are presented.
引用
收藏
页数:11
相关论文
共 37 条
[1]   NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 31 (02) :125-127
[2]  
Agafontsev D, 2012, ARXIV12025763
[3]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[4]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[5]   NON-LINEAR ASYMMETRIC SELF-PHASE MODULATION AND SELF-STEEPENING OF PULSES IN LONG OPTICAL-WAVEGUIDES [J].
ANDERSON, D ;
LISAK, M .
PHYSICAL REVIEW A, 1983, 27 (03) :1393-1398
[6]   Rogue wave triplets [J].
Ankiewicz, Adrian ;
Kedziora, David J. ;
Akhmediev, Nail .
PHYSICS LETTERS A, 2011, 375 (28-29) :2782-2785
[7]   Discrete rogue waves of the Ablowitz-Ladik and Hirota equations [J].
Ankiewicz, Adrian ;
Akhmediev, Nail ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2010, 82 (02)
[8]  
Chabchoub A, 2012, PHYS REV E, V86
[9]   INTEGRABILITY OF NON-LINEAR HAMILTONIAN-SYSTEMS BY INVERSE SCATTERING METHOD [J].
CHEN, HH ;
LEE, YC ;
LIU, CS .
PHYSICA SCRIPTA, 1979, 20 (3-4) :490-492
[10]   EXACT-SOLUTIONS OF THE MULTIDIMENSIONAL DERIVATIVE NONLINEAR SCHRODINGER-EQUATION FOR MANY-BODY SYSTEMS NEAR CRITICALITY [J].
CLARKSON, PA ;
TUSZYNSKI, JA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (19) :4269-4288