Predicting Capacity Fade in Silicon Anode-Based Li-Ion Batteries

被引:14
|
作者
Dasari, Harika [1 ]
Eisenbraun, Eric [1 ]
机构
[1] SUNY Polytech Inst, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA
关键词
particle size; volume fraction; NMC; NCA; loads; HIGH-POWER; LITHIATION; DEGRADATION; SIZE; ELECTRODES; MANAGEMENT; SIMULATION;
D O I
10.3390/en14051448
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
While silicon anodes hold promise for use in lithium-ion batteries owing to their very high theoretical storage capacity and relatively low discharge potential, they possess a major problem related to their large volume expansion that occurs with battery aging. The resulting stress and strain can lead to mechanical separation of the anode from the current collector and an unstable solid electrolyte interphase (SEI), resulting in capacity fade. Since capacity loss is in part dependent on the cell materials, two different electrodes, Lithium Nickel Oxide or LiNi0.8Co0.15Al0.05O2 (NCA) and LiNi1/3Mn1/3Co1/3O2 (NMC 111), were used in combination with silicon to study capacity fade effects using simulations in COMSOL version 5.5. The results of these studies provide insight into the effects of anode particle size and electrolyte volume fraction on the behavior of silicon anode-based batteries with different positive electrodes. It was observed that the performance of a porous matrix of solid active particles of silicon anode could be improved when the active particles were 150 nm or smaller. The range of optimized values of volume fraction of the electrolyte in the silicon anode were determined to be between 0.55 and 0.40. The silicon anode behaved differently in terms of cell time with NCA and NMC. However, NMC111 gave a high relative capacity in comparison to NCA and proved to be a better working electrode for the proposed silicon anode structure.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Studies on capacity fade of spinel-based Li-ion batteries
    Premanand, R
    Durairajan, A
    Haran, B
    White, R
    Popov, B
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (01) : A54 - A60
  • [2] Manganese in Graphite Anode and Capacity Fade in Li Ion Batteries
    Shkrob, Ilya A.
    Kropf, A. Jeremy
    Marin, Timothy W.
    Li, Yan
    Poluektov, Oleg G.
    Niklas, Jens
    Abraham, Daniel P.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (42): : 24335 - 24348
  • [3] Stabilization of Silicon Anode for Li-Ion Batteries
    Xiao, Jie
    Xu, Wu
    Wang, Deyu
    Choi, Daiwon
    Wang, Wei
    Li, Xiaolin
    Graff, Gordon L.
    Liu, Jun
    Zhang, Ji-Guang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) : A1047 - A1051
  • [4] Silicon as anode material for Li-ion batteries
    Ozanam, Francois
    Rosso, Michel
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 213 : 2 - 11
  • [5] A Comprehensive Capacity Fade Model and Analysis for Li-Ion Batteries
    Lin, Xianke
    Park, Jonghyun
    Liu, Lin
    Lee, Yoonkoo
    Sastry, A. M.
    Lu, Wei
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) : A1701 - A1710
  • [6] Machine Learning Aided Predictions for Capacity Fade of Li-Ion Batteries
    Penjuru, N. M. Hitesh
    Reddy, G. Vineeth
    Nair, Manikantan R.
    Sahoo, Soumili
    Mayank
    Jiang, Jason
    Ahmed, Joinal
    Wang, Huizhi
    Roy, Tribeni
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (05)
  • [7] Micromechanisms of Capacity Fade in Silicon Anode for Lithium-Ion Batteries
    Pal, S.
    Damle, S.
    Patel, S.
    Dutta, M. K.
    Kumta, P. N.
    Maiti, S.
    BATTERY/ENERGY TECHNOLOGY (GENERAL) - 220TH ECS MEETING, 2012, 41 (11): : 87 - 99
  • [8] Interconnected conductive gel binder for high capacity silicon anode for Li-ion batteries
    Taskin, Omer S.
    Yuca, Neslihan
    Papavasiliou, Joan
    Avgouropoulos, George
    MATERIALS LETTERS, 2020, 273
  • [9] Nanoflake CoN as a high capacity anode for Li-ion batteries
    Das, B.
    Reddy, M. V.
    Malar, P.
    Osipowicz, Thomas
    Rao, G. V. Subba
    Chowdari, B. V. R.
    SOLID STATE IONICS, 2009, 180 (17-19) : 1061 - 1068
  • [10] The influence of contact engineering on silicon-based anode for li-ion batteries
    Wu, Pengfei
    Chen, Shaohong
    Liu, Anhua
    NANO SELECT, 2021, 2 (03): : 468 - 491