FUNDAMENTAL MATRICES AND GREEN MATRICES FOR NON-HOMOGENEOUS ELLIPTIC SYSTEMS

被引:25
作者
Davey, Blair [1 ]
Hill, Jonathan [2 ]
Mayboroda, Svitlana [2 ]
机构
[1] CUNY City Coll, Dept Math, New York, NY 10031 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Fundamental solution; Green function; elliptic equations; Schrodinger operator; SCHRODINGER-OPERATORS;
D O I
10.5565/PUBLMAT6221807
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish existence, uniqueness, and scale-invariant estimates for fundamental solutions of non-homogeneous second order elliptic systems with bounded measurable coefficients in R-n and for the corresponding Green functions in arbitrary open sets. We impose certain non-homogeneous versions of de Giorgi-Nash-Moser bounds on the weak solutions and investigate in detail the assumptions on the lower order terms sufficient to guarantee such conditions. Our results, in particular, establish the existence and fundamental estimates for the Green functions associated to the Schrodinger (-Delta + V) and generalized Schrodinger (-div A del + V) operators with real and complex coefficients, on arbitrary domains.
引用
收藏
页码:537 / 614
页数:78
相关论文
共 30 条
[1]  
[Anonymous], 1963, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
[2]  
[Anonymous], 1965, ANN I FOURIER, DOI DOI 10.5802/AIF.204
[3]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[4]  
[Anonymous], 1993, OXFORD MATH MONOGR
[5]  
[Anonymous], 2011, Courant Lecture Notes in Mathematics
[6]  
[Anonymous], 1998, ASTERISQUE
[7]  
[Anonymous], 1983, GRUNDLEHREN MATH WIS
[8]  
[Anonymous], 2005, London Mathematical Society Monographs Series
[9]  
Aronson D.G., 1968, Ann. Scuola Norm. Sup. Pisa, V22, P607
[10]   Equivalence between regularity theorems and heat kernel estimates for higher order elliptic operators and systems under divergence form [J].
Auscher, P ;
Qafsaoui, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 177 (02) :310-364