Area density of localization entropy: I. The case of wedge localization

被引:8
作者
Schroer, Bert
机构
[1] CBPF, BR-22290180 Rio De Janeiro, Brazil
[2] FU Berlin, Inst Theoret Phys, Berlin, Germany
关键词
D O I
10.1088/0264-9381/23/17/008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using an appropriately formulated holographic lightfront projection, we derive an area law for the localization entropy caused by vacuum polarization on the horizon of a wedge region. Its area density has a simple kinematic relation to the volume extensive heat bath entropy of the lightfront algebra. Apart from a change of parametrization, the infinite lightlike length contribution to the lightfront volume factor corresponds to the short-distance divergence of the area density of the localization entropy. This correspondence is a consequence of the conformal invariance of the lightfront holography combined with the well-known fact that conformality relates short to long distances. In the explicit calculation of the strength factor we use the temperature duality relation of rational chiral theories whose derivation will be briefly reviewed. We comment on the potential relevance for the understanding of black hole entropy.
引用
收藏
页码:5227 / 5248
页数:22
相关论文
共 57 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
Araki H., 1977, Publ. Res. Inst. Math. Sci., V13, P173
[3]   GENERALIZED SECOND LAW OF THERMODYNAMICS IN BLACK-HOLE PHYSICS [J].
BEKENSTE.JD .
PHYSICAL REVIEW D, 1974, 9 (12) :3292-3300
[4]   DUALITY CONDITION FOR A HERMITIAN SCALAR FIELD [J].
BISOGNANO, JJ ;
WICHMANN, EH .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (04) :985-1007
[5]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383
[6]   Modular groups of quantum fields in thermal states [J].
Borchers, HJ ;
Yngvason, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) :601-624
[7]   Polarization-free generators and the S-matrix [J].
Borchers, HJ ;
Buchholz, D ;
Schroer, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 219 (01) :125-140
[8]   On revolutionizing quantum field theory with Tomita's modular theory [J].
Borchers, HJ .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (06) :3604-3673
[9]  
BORCHERS HJ, 2000, P QUANT THEORY SYMM, P270
[10]  
BRUNETTI R, 2006, GRQC0603079