Uncertainty quantification in DIC with Kriging regression

被引:17
|
作者
Wang, Dezhi [1 ]
DiazDela, P. A. [1 ,2 ]
Wang, Weizhuo [3 ]
Lin, Xiaoshan [4 ]
Patterson, Eann A. [4 ]
Mottershead, John E. [1 ,2 ]
机构
[1] Univ Liverpool, Ctr Engn Dynam, Liverpool L69 3GH, Merseyside, England
[2] Univ Liverpool, Inst Risk & Uncertainty, Liverpool L69 3GH, Merseyside, England
[3] Manchester Metropolitan Univ, Sch Engn, Manchester M15 6BH, Lancs, England
[4] Univ Liverpool, Ctr Mat & Struct, Liverpool L69 3GH, Merseyside, England
关键词
Digital Image Correlation; Measurement error; Kriging regression; Uncertainty quantification; DIGITAL IMAGE CORRELATION; FULL-FIELD STRAIN; DEFORMATION MEASUREMENTS; ERROR ASSESSMENT; DISPLACEMENT; INTERPOLATION; REDUCTION; GRADIENT; DESIGN;
D O I
10.1016/j.optlaseng.2015.09.006
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A Kriging regression model is developed as a post-processing technique for the treatment of measurement uncertainty in classical subset-based Digital Image Correlation (DIC). Regression is achieved by regularising the sample-point correlation matrix using a local, subset-based, assessment of the measurement error with assumed statistical normality and based on the Sum of Squared Differences (SSD) criterion. This leads to a Kriging-regression model in the form of a Gaussian process representing uncertainty on the Kriging estimate of the measured displacement field. The method is demonstrated using numerical and experimental examples. Kriging estimates of displacement fields are shown to be in excellent agreement with 'true' values for the numerical cases and in the experimental example uncertainty quantification is carried out using the Gaussian random process that forms part of the Kriging model. The root mean square error (RMSE) on the estimated displacements is produced and standard deviations on local strain estimates are determined. (c) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:182 / 195
页数:14
相关论文
共 50 条
  • [1] Kriging Methodology for Uncertainty Quantification in Computational Electromagnetics
    Kasdorf, Stephen
    Harmon, Jake J.
    Notaros, Branislav
    IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2024, 5 (02): : 474 - 486
  • [2] Uncertainty Quantification for DIC Displacement Measurements in Industrial Environments
    T. Siebert
    E. Hack
    G. Lampeas
    E. A. Patterson
    K. Splitthof
    Experimental Techniques, 2021, 45 : 685 - 694
  • [3] Uncertainty Quantification for DIC Displacement Measurements in Industrial Environments
    Siebert, T.
    Hack, E.
    Lampeas, G.
    Patterson, E. A.
    Splitthof, K.
    EXPERIMENTAL TECHNIQUES, 2021, 45 (05) : 685 - 694
  • [4] MIXED COVARIANCE FUNCTION KRIGING MODEL FOR UNCERTAINTY QUANTIFICATION
    Cheng, Kai
    Lu, Zhenzhou
    Xiao, Sinan
    Oladyshkin, Sergey
    Nowak, Wolfgang
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2022, 12 (03) : 17 - 30
  • [5] A Kriging-Based Uncertainty Quantification for Fracture Assessment
    Nguyen, Tran C. H.
    Vu-Bac, N.
    Budarapu, P. R.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2025, 22 (01)
  • [6] Uncertainty quantification for principal component regression
    Wu, Suofei
    Hannig, Jan
    Lee, Thomas C. M.
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 2157 - 2178
  • [7] Uncertainty quantification metrics for deep regression
    Lind, Simon Kristoffersson
    Xiong, Ziliang
    Forssen, Per-Erik
    Kruger, Volker
    PATTERN RECOGNITION LETTERS, 2024, 186 : 91 - 97
  • [8] Model uncertainty quantification in Cox regression
    Garcia-Donato, Gonzalo
    Cabras, Stefano
    Castellanos, Maria Eugenia
    BIOMETRICS, 2023, 79 (03) : 1726 - 1736
  • [9] Uncertainty quantification for honest regression trees
    Wu, Suofei
    Hannig, Jan
    Lee, Thomas C. M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 167
  • [10] Stereo-DIC Uncertainty Quantification based on Simulated Images
    Balcaen, R.
    Reu, P. L.
    Lava, P.
    Debruyne, D.
    EXPERIMENTAL MECHANICS, 2017, 57 (06) : 939 - 951