A graphene-covalent organic framework hybrid for high-performance supercapacitors

被引:143
作者
Wang, Chaojun [1 ]
Liu, Fei [1 ,2 ]
Chen, Junsheng [1 ]
Yuan, Ziwen [1 ]
Liu, Chang [1 ]
Zhang, Xinshi [1 ]
Xu, Meiying [2 ]
Wei, Li [1 ]
Chen, Yuan [1 ]
机构
[1] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[2] Guangdong Acad Sci, Guangdong Inst Microbiol, State Key Lab Appl Microbiol Southern China, Guangdong Prov Key Lab Microbial Culture Collect, Guangzhou 510070, Guangdong, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Graphene; Covalent organic framework; 2D material; Interlayer spacer; Supercapacitor; ELECTROCHEMICAL ENERGY-STORAGE; CARBON MATERIALS; ELECTRODES; OXIDE; FIBERS; DENSE;
D O I
10.1016/j.ensm.2020.07.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to strong van der Waals interactions, graphene nanosheets stack together, resulting in inefficient charge storage, which significantly compromises their performance as electrodes in supercapacitors. Herein, we design a hybrid material by interacting covalent organic frameworks (COFs) into reduced graphene oxide (rGO) films or fibers. The 2D COF nanosheets contain abundant mesopores, which prevents the stacking of rGO nanosheets, enabling the efficient electrolyte ion mass transfer. The optimal COF/rGO hybrid delivers a high gravimetric specific capacitance of 321 F g(-1) and volumetric specific capacitance of 237 F cm(-3) in an aqueous electrolyte measured in the three-electrode configuration, representing a breakthrough in capacitive graphene electrodes. Consequently, the fabricated 2D thin-film and 1D fiber supercapacitors deliver a high device energy density of 10.3 Wh kg(-1) or 7.9 mWh cm(-3) in aqueous and gel electrolytes, respectively. Moreover, an ultrahigh stack energy density of 87 Wh L-1 at the power density of 638 W L-1 is achieved using an ionic liquid electrolyte, which is superior to most of the carbon-based supercapacitors reported so far, as well as commercial lead-acid and lithium thin-film batteries. Overall, this study demonstrates 2D COFs as a critical enabler to realize high-performance graphene supercapacitors. 2D COFs also have the potential to enable unique architectures for many other 2D materials.
引用
收藏
页码:448 / 457
页数:10
相关论文
共 69 条
[1]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[2]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[3]   Carbons and Electrolytes for Advanced Supercapacitors [J].
Beguin, Francois ;
Presser, Volker ;
Balducci, Andrea ;
Frackowiak, Elzbieta .
ADVANCED MATERIALS, 2014, 26 (14) :2219-2251
[4]   Carbon-based composite materials for supercapacitor electrodes: a review [J].
Borenstein, Arie ;
Hanna, Ortal ;
Attias, Ran ;
Luski, Shalom ;
Brousse, Thierry ;
Aurbach, Doron .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (25) :12653-12672
[5]   Graphene Materials for Electrochemical Capacitors [J].
Chen, Ji ;
Li, Chun ;
Shi, Gaoquan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (08) :1244-1253
[6]   Achieving high energy density and high power density with pseudocapacitive materials [J].
Choi, Christopher ;
Ashby, David S. ;
Butts, Danielle M. ;
DeBlock, Ryan H. ;
Wei, Qiulong ;
Lau, Jonathan ;
Dunn, Bruce .
NATURE REVIEWS MATERIALS, 2020, 5 (01) :5-19
[7]   Mechanism of water transport in graphene oxide laminates [J].
Deng, Junjiao ;
You, Yi ;
Bustamante, Heriberto ;
Sahajwalla, Veena ;
Joshi, Rakesh K. .
CHEMICAL SCIENCE, 2017, 8 (03) :1701-1704
[8]   Fabrication of Graphene Oxide Supercapacitor Devices [J].
Down, Michael P. ;
Rowley-Neale, Samuel J. ;
Smith, Graham C. ;
Banks, Craig E. .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (02) :707-714
[9]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[10]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950