Bayesian model selection for LISA pathfinder

被引:8
作者
Karnesis, Nikolaos [1 ]
Nofrarias, Miquel [1 ]
Sopuerta, Carlos F. [1 ]
Gibert, Ferran [1 ]
Armano, Michele [2 ]
Audley, Heather [3 ,4 ]
Congedo, Giuseppe [5 ]
Diepholz, Ingo [3 ,4 ]
Ferraioli, Luigi [6 ]
Hewitson, Martin [3 ,4 ]
Hueller, Mauro [7 ,8 ]
Korsakova, Natalia [3 ,4 ]
McNamara, Paul W. [9 ]
Plagnol, Eric [10 ]
Vitale, Stefano [7 ,8 ]
机构
[1] Inst Ciencies Espai CSIC IEEC, Fac Ciencies, Bellaterra 08193, Spain
[2] ESAC, European Space Agcy, Madrid 28692, Spain
[3] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany
[4] Leibniz Univ Hannover, D-30167 Hannover, Germany
[5] Univ Oxford, Dept Phys, Oxford OX1 3RH, England
[6] ETH, Inst Geophys, CH-8092 Zurich, Switzerland
[7] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy
[8] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38123 Povo, Trento, Italy
[9] European Space Technol Ctr, European Space Agcy, NL-2200 AG Noordwijk, Netherlands
[10] Univ Paris Diderot, Observ Paris, APC, Sorbonne Paris Cite,CNRS,IN2P3,CEA,Ifru, F-75205 Paris 13, France
来源
PHYSICAL REVIEW D | 2014年 / 89卷 / 06期
关键词
D O I
10.1103/PhysRevD.89.062001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the eLISA concept. The data analysis team has developed complex three-dimensional models of the LISA Technology Package (LTP) experiment onboard the LPF. These models are used for simulations, but, more importantly, they will be used for parameter estimation purposes during flight operations. One of the tasks of the data analysis team is to identify the physical effects that contribute significantly to the properties of the instrument noise. A way of approaching this problem is to recover the essential parameters of a LTP model fitting the data. Thus, we want to define the simplest model that efficiently explains the observations. To do so, adopting a Bayesian framework, one has to estimate the so-called Bayes factor between two competing models. In our analysis, we use three main different methods to estimate it: the reversible jump Markov chain Monte Carlo method, the Schwarz criterion, and the Laplace approximation. They are applied to simulated LPF experiments in which the most probable LTP model that explains the observations is recovered. The same type of analysis presented in this paper is expected to be followed during flight operations. Moreover, the correlation of the output of the aforementioned methods with the design of the experiment is explored.
引用
收藏
页数:11
相关论文
共 34 条
[1]  
[Anonymous], 2005, LTPDA MATLAB TOOLBOX
[2]   The LISA Pathfinder mission [J].
Antonucci, F. ;
Armano, M. ;
Audley, H. ;
Auger, G. ;
Benedetti, M. ;
Binetruy, P. ;
Bogenstahl, J. ;
Bortoluzzi, D. ;
Bosetti, P. ;
Brandt, N. ;
Caleno, M. ;
Canizares, P. ;
Cavalleri, A. ;
Cesa, M. ;
Chmeissani, M. ;
Conchillo, A. ;
Congedo, G. ;
Cristofolini, I. ;
Cruise, M. ;
Danzmann, K. ;
De Marchi, F. ;
Diaz-Aguilo, M. ;
Diepholz, I. ;
Dixon, G. ;
Dolesi, R. ;
Dunbar, N. ;
Fauste, J. ;
Ferraioli, L. ;
Ferrone, V. ;
Fichter, W. ;
Fitzsimons, E. ;
Freschi, M. ;
Marin, A. Garcia ;
Marirrodriga, C. Garcia ;
Gerndt, R. ;
Gesa, L. ;
Gilbert, F. ;
Giardini, D. ;
Grimani, C. ;
Grynagier, A. ;
Guillaume, B. ;
Guzman, F. ;
Harrison, I. ;
Heinzel, G. ;
Hernandez, V. ;
Hewitson, M. ;
Hollington, D. ;
Hough, J. ;
Hoyland, D. ;
Hueller, M. .
CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (12)
[3]   LISA Pathfinder data analysis [J].
Antonucci, F. ;
Armano, M. ;
Audley, H. ;
Auger, G. ;
Benedetti, M. ;
Binetruy, P. ;
Boatella, C. ;
Bogenstahl, J. ;
Bortoluzzi, D. ;
Bosetti, P. ;
Caleno, M. ;
Cavalleri, A. ;
Cesa, M. ;
Chmeissani, M. ;
Ciani, G. ;
Conchillo, A. ;
Congedo, G. ;
Cristofolini, I. ;
Cruise, M. ;
Danzmann, K. ;
De Marchi, F. ;
Diaz-Aguilo, M. ;
Diepholz, I. ;
Dixon, G. ;
Dolesi, R. ;
Fauste, J. ;
Ferraioli, L. ;
Fertin, D. ;
Fichter, W. ;
Fitzsimons, E. ;
Freschi, M. ;
Marin, A. Garcia ;
Marirrodriga, C. Garcia ;
Gesa, L. ;
Giardini, D. ;
Grimani, C. ;
Grynagier, A. ;
Guillaume, B. ;
Guzman, F. ;
Harrison, I. ;
Heinzel, G. ;
Hewitson, M. ;
Hollington, D. ;
Hough, J. ;
Hoyland, D. ;
Hueller, M. ;
Huesler, J. ;
Jeannin, O. ;
Jennrich, O. ;
Jetzer, P. .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (09)
[4]  
Audley H., 2011, CLASSICAL QUANTUM GR, V28
[5]   LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy [J].
Barack, L ;
Cutler, C .
PHYSICAL REVIEW D, 2004, 69 (08) :24
[6]   Efficient Bayes factor estimation from the reversible jump output [J].
Bartolucci, F ;
Scaccia, L ;
Mira, A .
BIOMETRIKA, 2006, 93 (01) :41-52
[7]  
Cervantes FG, 2013, ASTR SOC P, V467, P141
[8]   Time domain maximum likelihood parameter estimation in LISA Pathfinder data analysis [J].
Congedo, G. ;
Ferraioli, L. ;
Hueller, M. ;
De Marchi, F. ;
Vitale, S. ;
Armano, M. ;
Hewitson, M. ;
Nofrarias, M. .
PHYSICAL REVIEW D, 2012, 85 (12)
[9]   Space-borne gravitational-wave detectors as time-delayed differential dynamometers [J].
Congedo, Giuseppe ;
Dolesi, Rita ;
Hueller, Mauro ;
Vitale, Stefano ;
Weber, William J. .
PHYSICAL REVIEW D, 2013, 88 (08)
[10]   Tests of Bayesian model selection techniques for gravitational wave astronomy [J].
Cornish, Neil J. ;
Littenberg, Tyson B. .
PHYSICAL REVIEW D, 2007, 76 (08)