Unusual electrochemical response of ZnO nanowires-decorated multiwalled carbon nanotubes

被引:27
作者
Mo, Guang-Quan [1 ]
Ye, Jian-Shan [1 ]
Zhang, Wei-De [1 ]
机构
[1] S China Univ Technol, Sch Chem & Chem Engn, Nano Sci Res Ctr, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Zinc oxide; Nanowires; Carbon nanotubes; Electrochemical properties; Biosensor; OXIDE NANOSTRUCTURES; ELECTRON-TRANSFER; REDOX ENZYMES; SOLAR-CELLS; ZINC-OXIDE; URIC-ACID; BIOSENSOR; TRANSPORT; NANOCOMPOSITES; NANOPARTICLES;
D O I
10.1016/j.electacta.2009.09.005
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A novel type of ZnO nanowires-modified multiwalled carbon nanotubes (MWCNTs) nanocomposite (ZnO-NWs/MWCNTs) has been prepared by a hydrothermal process. The ZnO-NWs/MWCNTs nanocomposite has a uniform surface distribution and large coverage of ZnO nanowires onto MWCNTs with 3 D configuration, which was characterized by scanning electron microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy methods were applied to investigate the electrochemical properties of ZnO-NWs/MWCNTs nanocomposite. Surprisingly, unlike the conventional n-type semiconducting ZnO nanowires grown on Ta substrate, the ZnO-NWs/MWCNTs nanocomposite exhibits excellent electron transfer capability and gives a pair of well-defined symmetric redox peaks towards ferricyanide probe. What's more, the ZnO-NWs/MWCNTs nanocomposite shows remarkable electrocatalytic activity (current response increased 4 folds at 0.3V) towards H2O2 by comparing with bare MWCNTs. The ZnO-NWs/MWCNTs nanocomposite could find applications in novel biosensors and other electronic devices. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:511 / 515
页数:5
相关论文
共 36 条
[1]   Nanotubes from carbon [J].
Ajayan, PM .
CHEMICAL REVIEWS, 1999, 99 (07) :1787-1799
[2]   Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite [J].
Chen, Jin ;
Zhang, Wei-De ;
Ye, Jian-Shan .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (09) :1268-1271
[3]   Novel ZnO nanostructures grown on carbon nanotubes by thermal evaporation [J].
Chrissanthopoulos, A. ;
Baskoutas, S. ;
Bouropoulos, N. ;
Dracopoulos, V. ;
Tasis, D. ;
Yannopoulos, S. N. .
THIN SOLID FILMS, 2007, 515 (24) :8524-8528
[4]   Modification of carbon nanotubes with redox hydrogel: Improvement of amperometric sensing sensitivity for redox enzymes [J].
Cui, Hui-Fang ;
Ye, Jian-Shan ;
Zhang, Wei-De ;
Sheu, Fwu-Shan .
BIOSENSORS & BIOELECTRONICS, 2009, 24 (06) :1723-1729
[5]   A novel tetragonal pyramid-shaped porous ZnO nanostructure and its application in the biosensing of horseradish peroxidase [J].
Dai, Zhihui ;
Liu, Ke ;
Tang, Yawen ;
Yang, Xiaodi ;
Bao, Jianchun ;
Shen, Jian .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (16) :1919-1926
[6]   In vivo detection of superoxide anion in bean sprout based on ZnO nanodisks with facilitated activity for direct electron transfer of superoxide dismutase [J].
Deng, Zifeng ;
Rui, Qi ;
Yin, Xia ;
Liu, Haiqing ;
Tian, Yang .
ANALYTICAL CHEMISTRY, 2008, 80 (15) :5839-5846
[7]   Optical properties of ZnO nanostructures [J].
Djurisic, Aleksandra B. ;
Leung, Yu Hang .
SMALL, 2006, 2 (8-9) :944-961
[8]   Zinc oxide nanostructures: Synthesis and properties [J].
Fan, ZY ;
Lu, JG .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2005, 5 (10) :1561-1573
[9]   Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J].
Grätzel, M .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2004, 164 (1-3) :3-14
[10]   CNT-CdTe versatile donor-acceptor nanohybrids [J].
Guldi, DM ;
Rahman, GMA ;
Sgobba, V ;
Kotov, NA ;
Bonifazi, D ;
Prato, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (07) :2315-2323