Spindle-like Fe3O4 nanoparticles for improving sensitivity and repeatability of giant magnetoresistance biosensors

被引:21
作者
Guan, Mengjie [1 ,2 ]
Mu, Xuejian [1 ,2 ]
Zhang, Hao [1 ,2 ]
Zhang, Yang [1 ,2 ]
Xu, Jie [1 ,2 ]
Li, Qiang [1 ,2 ]
Wang, Xia [1 ,2 ]
Cao, Derang [1 ,2 ]
Li, Shandong [1 ,2 ]
机构
[1] Qingdao Univ, Coll Phys, Univ Ind Joint Ctr Ocean Observat & Broadband Com, Key Lab Photon Mat & Technol,Univ Shandong, Qingdao 266071, Shandong, Peoples R China
[2] Qingdao Univ, Natl Demonstrat Ctr Expt Appl Phys Educ, Qingdao 266071, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
GMR SENSORS; IMMUNOASSAY; PROTEIN; PERFORMANCE; LABELS; MODEL; ARRAY; FOOD;
D O I
10.1063/1.5096345
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetic labels are one of the most important components in giant magnetoresistance (GMR) biodetection systems and affect detection signals directly. Many researchers have improved the detection performance of GMR biosensors by optimizing the properties of their magnetic labels, including size, shape, coercivity, and magnetization. In most studies, magnetic labels are usually spherical, and there is little research involving alternative shapes. In this work, we prepared spindlelike Fe3O4 nanoparticles (NPs) by hydrothermal and heating reduction. The as-prepared magnetic NPs were incorporated in the GMR biodetection system. An ultralow limitation of detection concentration of 0.05ng/ml was achieved, which can be attributed to the shape anisotropy of the spindlelike magnetic particles. A wide linear work range, 0.05-1000ng/ml, can be achieved by the use of the spindlelike Fe3O4 NPs in GMR biodetection. Moreover, the NPs exhibit good repeatability after multiple measurements, which can be attributed to the NPs' stable and effective magnetic diffusion field. The use of spindlelike Fe3O4 NPs as magnetic labels in this work provides a new method for improving the sensitivity and repeatability of GMR biodetection.
引用
收藏
页数:6
相关论文
共 41 条
[1]   The use of nanocrystals in biological detection [J].
Alivisatos, P .
NATURE BIOTECHNOLOGY, 2004, 22 (01) :47-52
[2]   Process Map for the Hydrothermal Synthesis of α-Fe2O3 Nanorods [J].
Almeida, Trevor P. ;
Fay, Mike ;
Zhu, Yanqiu ;
Brown, Paul D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (43) :18689-18698
[3]   Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses [J].
Bahadir, Elif Burcu ;
Sezginturk, Mustafa Kemal .
ANALYTICAL BIOCHEMISTRY, 2015, 478 :107-120
[4]   Sensitive and rapid immunoassay for parathyroid hormone using magnetic particle labels and magnetic actuation [J].
Dittmer, W. U. ;
de Kievit, P. ;
Prins, M. W. J. ;
Vissers, J. L. M. ;
Mersch, M. E. C. ;
Martens, M. F. W. C. .
JOURNAL OF IMMUNOLOGICAL METHODS, 2008, 338 (1-2) :40-46
[5]  
Gaster RS, 2011, NAT NANOTECHNOL, V6, P314, DOI [10.1038/nnano.2011.45, 10.1038/NNANO.2011.45]
[6]   GMR biosensor arrays: Correction techniques for reproducibility and enhanced sensitivity [J].
Hall, D. A. ;
Gaster, R. S. ;
Osterfeld, S. J. ;
Murmann, B. ;
Wang, S. X. .
BIOSENSORS & BIOELECTRONICS, 2010, 25 (09) :2177-2181
[7]  
Hua Y., 2011, IEEE SENSORS, P805
[8]   On-chip manipulation and detection of magnetic particles for functional biosensors [J].
Janssen, X. J. A. ;
van IJzendoorn, L. J. ;
Prins, M. W. J. .
BIOSENSORS & BIOELECTRONICS, 2008, 23 (06) :833-838
[9]   Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor [J].
Koets, M. ;
van der Wijk, T. ;
van Eemeren, J. T. W. M. ;
van Amerongen, A. ;
Prins, M. W. J. .
BIOSENSORS & BIOELECTRONICS, 2009, 24 (07) :1893-1898
[10]   Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications [J].
Li, GX ;
Sun, SH ;
Wilson, RJ ;
White, RL ;
Pourmand, N ;
Wang, SX .
SENSORS AND ACTUATORS A-PHYSICAL, 2006, 126 (01) :98-106