Transport Phenomena in Nano/Molecular Confinements

被引:86
作者
Nazari, Masoumeh [1 ]
Davoodabadi, Ali [1 ]
Huang, Dezhao [2 ]
Luo, Tengfei [2 ,3 ]
Ghasemi, Hadi [1 ]
机构
[1] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA
[2] Univ Notre Dame, Dept Aerosp & Mech Engn, Notre Dame, IN 46556 USA
[3] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
nanochannel; liquid transport; ion transport; interface; molecular confinement; ionic diodes; energy harvesting; nanofluidics; molecular simulation; carbon nanotubes; CARBON NANOTUBE MEMBRANES; MOLECULAR-DYNAMICS SIMULATION; FAST WATER TRANSPORT; TUNABLE NANOFLUIDIC DIODE; SELF-ASSEMBLED MONOLAYERS; ION-TRANSPORT; BORON-NITRIDE; CURRENT RECTIFICATION; CONCENTRATION-GRADIENT; NANOCONFINED WATER;
D O I
10.1021/acsnano.0c07372
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The transport of fluid and ions in nano/molecular confinements is the governing physics of a myriad of embodiments in nature and technology including human physiology, plants, energy modules, water collection and treatment systems, chemical processes, materials synthesis, and medicine. At nano/molecular scales, the confinement dimension approaches the molecular size and the transport characteristics deviates significantly from that at macro/micro scales. A thorough understanding of physics of transport at these scales and associated fluid properties is undoubtedly critical for future technologies. This compressive review provides an elaborate picture on the promising future applications of nano/molecular transport, highlights experimental and simulation metrologies to probe and comprehend this transport phenomenon, discusses the physics of fluid transport, tunable flow by orders of magnitude, and gating mechanisms at these scales, and lists the advancement in the fabrication methodologies to turn these transport concepts into reality. Properties such as chain-like liquid transport, confined gas transport, surface charge-driven ion transport, physical/chemical ion gates, and ion diodes will provide avenues to devise technologies with enhanced performance inaccessible through macro/micro systems. This review aims to provide a consolidated body of knowledge to accelerate innovation and breakthrough in the above fields.
引用
收藏
页码:16348 / 16391
页数:44
相关论文
共 339 条
[1]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[2]   Aquaporin water channels - from atomic structure to clinical medicine [J].
Agre, P ;
King, LS ;
Yasui, M ;
Guggino, WB ;
Ottersen, OP ;
Fujiyoshi, Y ;
Engel, A ;
Nielsen, S .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 542 (01) :3-16
[3]   A pH-tunable nanofluidic diode:: Electrochemical rectification in a reconstituted single ion channel [J].
Alcaraz, Antonio ;
Ramirez, Patricio ;
Garcia-Gimenez, Elena ;
Lopez, M. Lidon ;
Andrio, Andreu ;
Aguilella, Vicente M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (42) :21205-21209
[4]   A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties [J].
Ali, Mubarak ;
Ramirez, Patricio ;
Mafe, Salvador ;
Neumann, Reinhard ;
Ensinger, Wolfgang .
ACS NANO, 2009, 3 (03) :603-608
[5]  
Alibakhshi M.A, 2016, SCI REP-UK, V6, P1
[6]   Diode-like single-ion track membrane prepared by electro-stopping [J].
Apel, PY ;
Korchev, YE ;
Siwy, Z ;
Spohr, R ;
Yoshida, M .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2001, 184 (03) :337-346
[7]   Combining molecular dynamics simulation and transition state theory to evaluate solid-liquid interfacial friction in carbon nanotube membranes [J].
Babu, Jeetu S. ;
Sathian, Sarith P. .
PHYSICAL REVIEW E, 2012, 85 (05)
[8]   The role of activation energy and reduced viscosity on the enhancement of water flow through carbon nanotubes [J].
Babu, Jeetu S. ;
Sathian, Sarith P. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (19)
[9]  
Baker R. W., 2012, MEMBRANE TECHNOLOGY, V1, P349
[10]  
Baker R. W., 2012, MEMBRANE TECHNOLOGY, V1, P237