Hydrogen Production from Methane Cracking in Dielectric Barrier Discharge Catalytic Plasma Reactor Using a Nanocatalyst

被引:30
作者
Khoja, Asif Hussain [1 ]
Azad, Abul Kalam [2 ]
Saleem, Faisal [3 ]
Khan, Bilal Alam [4 ]
Naqvi, Salman Raza [5 ]
Mehran, Muhammad Taqi [5 ]
Amin, Nor Aishah Saidina [6 ]
机构
[1] Natl Univ Sci & Technol NUST, US Pakistan Ctr Adv Studies Energy USPCAS E, Dept Thermal Energy Engn, Fossil Fuels Lab, Sect H-12, Islamabad 44000, Pakistan
[2] Cent Queensland Univ, Sch Engn & Technol, 120 Spencer St, Melbourne, Vic 3000, Australia
[3] Univ Engn & Technol, Dept Chem & Polymer Engn, Faisalabad Campus, Lahore 38000, Pakistan
[4] Politecn Torino, Dept Appl Sci & Technol, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[5] Natl Univ Sci & Technol NUST, Sch Chem & Mat Engn, Sect H-12, Islamabad 44000, Pakistan
[6] Univ Technol Malaysia UTM, Chem React Engn Grp, Sch Chem & Energy Engn, Fac Engn, Johor Baharu 81310, Malaysia
关键词
hydrogen production; methane cracking; DBD plasma reactor; MgAl2O4; CNTs; NANOSECOND PULSED PLASMA; COX FREE HYDROGEN; NONTHERMAL PLASMA; CARBON NANOTUBES; MGAL2O4; SPINEL; DRY; DECOMPOSITION; GAS; NI/MGAL2O4; CONVERSION;
D O I
10.3390/en13225921
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The study experimentally investigated a novel approach for producing hydrogen from methane cracking in dielectric barrier discharge catalytic plasma reactor using a nanocatalyst. Plasma-catalytic methane (CH4) cracking was undertaken in a dielectric barrier discharge (DBD) catalytic plasma reactor using Ni/MgAl2O4. The Ni/MgAl2O4 was synthesised through co-precipitation followed customised hydrothermal method. The physicochemical properties of the catalyst were examined using X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and thermogravimetric analysis (TGA). The Ni/MgAl2O4 shows a porous structure spinel MgAl2O4 and thermal stability. In the catalytic-plasma methane cracking, the Ni/MgAl2O4 shows 80% of the maximum conversion of CH4 with H-2 selectivity 75%. Furthermore, the stability of the catalyst was encouraging 16 h with CH4 conversion above 75%, and the selectivity of H-2 was above 70%. This is attributed to the synergistic effect of the catalyst and plasma. The plasma-catalytic CH4 cracking is a promising technology for the simultaneous H-2 and carbon nanotubes (CNTs) production for energy storage applications.
引用
收藏
页数:15
相关论文
共 56 条
[1]   Methane Reforming Process by means of a Carbonated Na2ZrO3 Catalyst [J].
Arturo Mendoza-Nieto, J. ;
Vera, Elizabeth ;
Pfeiffer, Heriberto .
CHEMISTRY LETTERS, 2016, 45 (06) :685-687
[2]  
Azmina M., 2012, VARIETY BIOHYDROCARB, P43
[3]   Conversion of methane through dielectric-barrier discharge plasma [J].
Wang B. ;
Cao X. ;
Yang K. ;
Xu G. .
Frontiers of Chemical Engineering in China, 2008, 2 (4) :373-378
[4]   Syngas production via the biogas dry reforming reaction over nickel supported on modified with CeO2 and/or La2O3 alumina catalysts [J].
Charisiou, N. D. ;
Siakavelas, G. ;
Papageridis, K. N. ;
Baklavaridis, A. ;
Tzounis, L. ;
Avraam, D. G. ;
Goula, M. A. .
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 31 :164-183
[5]   Carbon black and hydrogen production process analysis [J].
da Costa Labanca, Aurelio Reis .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (47) :25698-25707
[6]   Hydrogen and/or syngas production by combined steam and dry reforming of methane on nickel catalysts [J].
Dan, Monica ;
Mihet, Maria ;
Lazar, Mihaela D. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (49) :26254-26264
[7]   Catalytic methane technology for carbon nanotubes and graphene [J].
Dong, Zhuoya ;
Li, Bofan ;
Cui, Chaojie ;
Qian, Weizhong ;
Jin, Yong ;
Wei, Fei .
REACTION CHEMISTRY & ENGINEERING, 2020, 5 (06) :991-1004
[8]   Improved activity of Ni/MgAl2O4 for CO2 methanation by the plasma decomposition [J].
Fan, Zhigang ;
Sun, Kaihang ;
Rui, Ning ;
Zhao, Binran ;
Liu, Chang-jun .
JOURNAL OF ENERGY CHEMISTRY, 2015, 24 (05) :655-659
[9]   A comparison of methods to quantify greenhouse gas emissions of cropping systems in LCA [J].
Goglio, R. ;
Smith, W. N. ;
Grant, B. B. ;
Desjardins, R. L. ;
Gao, X. ;
Hanis, K. ;
Tenuta, M. ;
Campbell, C. A. ;
McConkey, B. G. ;
Nemecek, T. ;
Burgess, P. J. ;
Williams, A. G. .
JOURNAL OF CLEANER PRODUCTION, 2018, 172 :4010-4017
[10]   The deposition of coke from methane on a Ni/MgAl2O4 catalyst [J].
Guo, Jianjun ;
Lou, Hui ;
Zheng, Xiaoming .
CARBON, 2007, 45 (06) :1314-1321