Linear and nonlinear microrheology of lysozyme layers forming at the air-water interface

被引:26
|
作者
Allan, Daniel B. [1 ]
Firester, Daniel M. [1 ]
Allard, Victor P. [1 ]
Reich, Daniel H. [1 ]
Stebe, Kathleen J. [2 ]
Leheny, Robert L. [1 ]
机构
[1] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[2] Univ Penn, Dept Biomol & Chem Engn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
STRUCTURAL CONFORMATION; RHEOLOGICAL PROPERTIES; ACTIVE MICRORHEOLOGY; AIR/WATER INTERFACE; BROWNIAN DYNAMICS; SURFACE RHEOLOGY; PROTEIN; DRAG; VISCOELASTICITY; DENATURATION;
D O I
10.1039/c4sm00484a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report experiments studying the mechanical evolution of layers of the protein lysozyme adsorbing at the air-water interface using passive and active microrheology techniques to investigate the linear and nonlinear rheological response, respectively. Following formation of a new interface, the linear shear rheology, which we interrogate through the Brownian motion of spherical colloids at the interface, becomes viscoelastic with a complex modulus that has approximately power-law frequency dependence. The power-law exponent characterizing this frequency dependence decreases steadily with increasing layer age. Meanwhile, the nonlinear microrheology, probed via the rotational motion of magnetic nanowires at the interface, reveals a layer response characteristic of a shear-thinning power-law fluid with a flow index that decreases with age. We discuss two possible frameworks for understanding this mechanical evolution: gelation and the formation of a soft glass phase.
引用
收藏
页码:7051 / 7060
页数:10
相关论文
共 50 条
  • [21] Chiral recognition at the air-water interface
    Ariga, Katsuhiko
    Michinobu, Tsuyoshi
    Nakanishi, Takashi
    Hill, Jonathan P.
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2008, 13 (1-2) : 23 - 30
  • [22] Initial Conformation of Adsorbed Proteins at an Air-Water Interface
    Yano, Yohko F.
    Arakawa, Etsuo
    Voegeli, Wolfgang
    Kamezawa, Chika
    Matsushita, Tadashi
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (17) : 4662 - 4666
  • [23] Atmospheric Intermediates at the Air-Water Interface
    Enami, Shinichi
    Numadate, Naoki
    Hama, Tetsuya
    JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (28) : 5419 - 5434
  • [24] The determination of segment density profiles of polyethylene oxide layers adsorbed at the air-water interface
    Lu, JR
    Su, TJ
    Thomas, RK
    Penfold, J
    Richards, RW
    POLYMER, 1996, 37 (01) : 109 - 114
  • [25] Effect of salt ions on protein layers at the air-water interface under a crystallization condition
    Yano, Yohko F.
    Uruga, Tomoya
    CHEMICAL PHYSICS, 2013, 419 : 153 - 155
  • [26] Effect of head groups on the phase transitions in Gibbs adsorption layers at the air-water interface
    Hossain, Md. Mufazzal
    Iimura, Kenichi
    Yoshida, Masaki
    Sakai, Takaya
    Kato, Teiji
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 348 (01) : 146 - 151
  • [27] Albumin displacement at the air-water interface by Tween (Polysorbate) surfactants
    Rabe, Martin
    Kerth, Andreas
    Blume, Alfred
    Garidel, Patrick
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2020, 49 (07): : 533 - 547
  • [28] Interactions of polysaccharides with β-lactoglobulin adsorbed films at the air-water interface
    Baeza, R
    Sanchez, CC
    Pilosof, AMR
    Patino, JMR
    FOOD HYDROCOLLOIDS, 2005, 19 (02) : 239 - 248
  • [29] Rheology of mixed β-casein/β-lactoglobulin films at the air-water interface
    Ridout, MJ
    Mackie, AR
    Wilde, PJ
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2004, 52 (12) : 3930 - 3937
  • [30] Interaction of human erythrocyte catalase with air-water interface in cryoEM
    Chen, Shaoxia
    Li, Jade
    Vinothkumar, Kutti R.
    Henderson, Richard
    MICROSCOPY, 2022, 71 : i51 - i59