Understanding deregulated cellular and molecular dynamics in the haematopoietic stem cell niche to develop novel therapeutics for bone marrow fibrosis

被引:16
作者
Gleitz, Helene F. E. [1 ]
Kramann, Rafael [2 ]
Schneider, Rebekka K. [1 ,3 ]
机构
[1] Erasmus MC Canc Inst, Dept Haematol, Rotterdam, Netherlands
[2] Rhein Westfal TH Aachen, Div Nephrol & Clin Immunol, Aachen, Germany
[3] Rhein Westfal TH Aachen, Dept Haematol Oncol Haemostaseol & Stem Cell Tran, Aachen, Germany
基金
欧洲研究理事会;
关键词
fibrosis; bone marrow; myofibroblasts; mesenchymal stromal cells; Hedgehog signalling; haematopoietic stem cells; myeloproliferative neoplasms; INTERNATIONAL WORKING GROUP; MESENCHYMAL STROMAL CELLS; PRIMARY MYELOFIBROSIS; MYELOPROLIFERATIVE NEOPLASMS; ESSENTIAL THROMBOCYTHEMIA; IDIOPATHIC MYELOFIBROSIS; MYELOID METAPLASIA; AVAILABLE THERAPY; TRANSPLANTATION; MUTATIONS;
D O I
10.1002/path.5078
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Bone marrow fibrosis is the continuous replacement of blood-forming cells in the bone marrow with excessive scar tissue, leading to failure of the body to produce blood cells and ultimately to death. Myofibroblasts are fibrosis-driving cells and are well characterized in solid organ fibrosis, but their role and cellular origin in bone marrow fibrosis have remained obscure. Recent work has demonstrated that Gli1(+) and leptin receptor(+) mesenchymal stromal cells are progenitors of fibrosis-causing myofibroblasts in the bone marrow. Genetic ablation or pharmacological inhibition of Gli1(+) mesenchymal stromal cells ameliorated fibrosis in mouse models of myelofibrosis. Conditional deletion of the platelet-derived growth factor (PDGF) receptor- (PDGFRA) gene (Pdgfra) and inhibition of PDGFRA by imatinib in leptin receptor(+) stromal cells suppressed their expansion and ameliorated bone marrow fibrosis. Understanding the cellular and molecular mechanisms in the haematopoietic stem cell niche that govern the mesenchymal stromal cell-to-myofibroblast transition and myofibroblast expansion will be critical to understand the pathogenesis of bone marrow fibrosis in both malignant and non-malignant conditions, and will guide the development of novel therapeutics. In this review, we summarize recent discoveries of mesenchymal stromal cells as part of the haematopoietic niche and as myofibroblast precursors, and discuss potential therapeutic strategies in the specific targeting of fibrotic transformation in bone marrow fibrosis. (C) 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
引用
收藏
页码:138 / 146
页数:9
相关论文
共 71 条
[31]   Epidemiology of myeloproliferative neoplasms in the United States [J].
Mehta, Jyotsna ;
Wang, Hongwei ;
Iqbal, Sheikh Usman ;
Mesa, Ruben .
LEUKEMIA & LYMPHOMA, 2014, 55 (03) :595-600
[32]   Mesenchymal and haematopoietic stem cells form a unique bone marrow niche [J].
Mendez-Ferrer, Simon ;
Michurina, Tatyana V. ;
Ferraro, Francesca ;
Mazloom, Amin R. ;
MacArthur, Ben D. ;
Lira, Sergio A. ;
Scadden, David T. ;
Ma'ayan, Avi ;
Enikolopov, Grigori N. ;
Frenette, Paul S. .
NATURE, 2010, 466 (7308) :829-U59
[33]   Altered SDF-1/CXCR4 axis in patients with primary myelofibrosis and in the Gata1low mouse model of the disease [J].
Migliaccio, Anna Rita ;
Martelli, Fabrizio ;
Verrucci, Maria ;
Migliaccio, Giovanni ;
Vannucchi, Alessandro Maria ;
Ni, Hongyu ;
Xu, Mingjiang ;
Eang, Yi ;
Nakamoto, Betty ;
Papayannopoulou, Thalia ;
Hoffman, Ronald .
EXPERIMENTAL HEMATOLOGY, 2008, 36 (02) :158-171
[34]   The bone marrow niche for haematopoietic stem cells [J].
Morrison, Sean J. ;
Scadden, David T. .
NATURE, 2014, 505 (7483) :327-334
[35]   Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2 [J].
Nangalia, J. ;
Massie, C. E. ;
Baxter, E. J. ;
Nice, F. L. ;
Gundem, G. ;
Wedge, D. C. ;
Avezov, E. ;
Li, J. ;
Kollmann, K. ;
Kent, D. G. ;
Aziz, A. ;
Godfrey, A. L. ;
Hinton, J. ;
Martincorena, I. ;
Van Loo, P. ;
Jones, A. V. ;
Guglielmelli, P. ;
Tarpey, P. ;
Harding, H. P. ;
Fitzpatrick, J. D. ;
Goudie, C. T. ;
Ortmann, C. A. ;
Loughran, S. J. ;
Raine, K. ;
Jones, D. R. ;
Butler, A. P. ;
Teague, J. W. ;
O'Meara, S. ;
McLaren, S. ;
Bianchi, M. ;
Silber, Y. ;
Dimitropoulou, D. ;
Bloxham, D. ;
Mudie, L. ;
Maddison, M. ;
Robinson, B. ;
Keohane, C. ;
Maclean, C. ;
Hill, K. ;
Orchard, K. ;
Tauro, S. ;
Du, M-Q ;
Greaves, M. ;
Bowen, D. ;
Huntly, B. J. P. ;
Harrison, C. N. ;
Cross, N. C. P. ;
Ron, D. ;
Vannucchi, A. M. ;
Papaemmanuil, E. .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 369 (25) :2391-2405
[36]   The Essential Functions of Adipo-osteogenic Progenitors as the Hematopoietic Stem and Progenitor Cell Niche [J].
Omatsu, Yoshiki ;
Sugiyama, Tatsuki ;
Kohara, Hiroshi ;
Kondoh, Gen ;
Fujii, Nobutaka ;
Kohno, Kenji ;
Nagasawa, Takashi .
IMMUNITY, 2010, 33 (03) :387-399
[37]   Cell cycle regulation in hematopoietic stem cells [J].
Pietras, Eric M. ;
Warr, Matthew R. ;
Passegue, Emmanuelle .
JOURNAL OF CELL BIOLOGY, 2011, 195 (05) :709-720
[38]   PDGFRα and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion [J].
Pinho, Sandra ;
Lacombe, Julie ;
Hanoun, Maher ;
Mizoguchi, Toshihide ;
Bruns, Ingmar ;
Kunisaki, Yuya ;
Frenette, Paul S. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2013, 210 (07) :1351-1367
[39]  
Rambaldi Alessandro, 2008, Hematology Am Soc Hematol Educ Program, P83, DOI 10.1182/asheducation-2008.1.83
[40]   IL-6 Controls Leukemic Multipotent Progenitor Cell Fate and Contributes to Chronic Myelogenous Leukemia Development [J].
Reynaud, Damien ;
Pietras, Eric ;
Barry-Holson, Keegan ;
Mir, Alain ;
Binnewies, Mikhail ;
Jeanne, Marion ;
Sala-Torra, Olga ;
Radich, Jerald P. ;
Passegue, Emmanuelle .
CANCER CELL, 2011, 20 (05) :661-673