Implicit Lyapunov-Krasovski Functionals for Stability Analysis and Control Design of Time-Delay Systems

被引:37
作者
Polyakov, Andrey [1 ,2 ]
Efimov, Denis [1 ,3 ]
Perruquetti, Wilfrid [1 ,2 ]
Richard, J-P. [1 ,2 ]
机构
[1] Inria Lille Nord Europe, Non A, F-59650 Villeneuve Dascq, France
[2] CRIStAL CNRS UMR 9189 Ecole Cent Lille, F-59651 Villeneuve Dascq, France
[3] St Petersburg State Univ Informat Technol Mech &, Dept Control Syst & Informat, St Petersburg 197101, Russia
关键词
Delay systems; nonlinear control systems; STABILIZATION;
D O I
10.1109/TAC.2015.2422451
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The method of Implicit Lyapunov-Krasovski Functional (ILKF) for stability analysis of time-delay systems is introduced. Theorems on Lyapunov, asymptotic, (hyper) exponential, finite-time and fixed-time stability analysis using ILKF are presented. The hyper exponential stabilization algorithm for a time-delay system is presented. The theoretical result is supported by numerical simulation.
引用
收藏
页码:3344 / 3349
页数:6
相关论文
共 26 条
  • [11] Gu K., 2003, CONTROL ENGN SER BIR
  • [12] FINITE-TIME CONTROLLERS
    HAIMO, VT
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (04) : 760 - 770
  • [13] Finite-time stabilization and stabilizability of a class of controllable systems
    Hong, YG
    [J]. SYSTEMS & CONTROL LETTERS, 2002, 46 (04) : 231 - 236
  • [14] IMPLICIT FUNCTION THEOREM
    JITTORNTRUM, K
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1978, 25 (04) : 575 - 577
  • [15] Kharitonov V. L., 1999, Annual Reviews in Control, V23, P185, DOI 10.1016/S1367-5788(99)00021-8
  • [16] KOROBOV VI, 1979, DOKL AKAD NAUK SSSR+, V248, P1051
  • [17] Krstic M, 2009, SYST CONTROL-FOUND A, P1, DOI 10.1007/978-0-8176-4877-0
  • [18] Macdonnell J., 1989, INT J MATH EDUC SCI, V20, P297
  • [19] Finite-time stability and stabilization of time-delay systems
    Moulay, Emmanuel
    Dambrine, Michel
    Yeganefar, Nima
    Perruquetti, Wilfrid
    [J]. SYSTEMS & CONTROL LETTERS, 2008, 57 (07) : 561 - 566
  • [20] Finite-time stability and stabilization: State of the art
    Laboratoire Paul Painlevé , UFR de Mathématiques, Université des Sciences et Technologies de Lille, 059655 Villeneuve d'Ascq Cedex, France
    不详
    [J]. Lect. Notes Control Inf. Sci., 2006, (23-41): : 23 - 41