Concordance among gene-expression-based predictors for breast cancer

被引:993
作者
Fan, Cheng
Oh, Daniel S.
Wessels, Lodewyk
Weigelt, Britta
Nuyten, Dimitry S. A.
Nobel, Andrew B.
van't Veer, Laura J.
Perou, Charles M.
机构
[1] Univ N Carolina, Lineberger Comprehens Canc Ctr, Dept Genet, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Lineberger Comprehens Canc Ctr, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Lineberger Comprehens Canc Ctr, Dept Pathol & Lab Med, Chapel Hill, NC 27599 USA
[4] Netherlands Canc Inst, Div Diagnost Oncol, Amsterdam, Netherlands
[5] Netherlands Canc Inst, Div Radiotherapy, Amsterdam, Netherlands
关键词
D O I
10.1056/NEJMoa052933
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND: Gene-expression-profiling studies of primary breast tumors performed by different laboratories have resulted in the identification of a number of distinct prognostic profiles, or gene sets, with little overlap in terms of gene identity. METHODS: To compare the predictions derived from these gene sets for individual samples, we obtained a single data set of 295 samples and applied five gene-expression-based models: intrinsic subtypes, 70-gene profile, wound response, recurrence score, and the two-gene ratio (for patients who had been treated with tamoxifen). RESULTS: We found that most models had high rates of concordance in their outcome predictions for the individual samples. In particular, almost all tumors identified as having an intrinsic subtype of basal-like, HER2-positive and estrogen-receptor-negative, or luminal B (associated with a poor prognosis) were also classified as having a poor 70-gene profile, activated wound response, and high recurrence score. The 70-gene and recurrence-score models, which are beginning to be used in the clinical setting, showed 77 to 81 percent agreement in outcome classification. CONCLUSIONS: Even though different gene sets were used for prognostication in patients with breast cancer, four of the five tested showed significant agreement in the outcome predictions for individual patients and are probably tracking a common set of biologic phenotypes.
引用
收藏
页码:560 / 569
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 2004, Biostatistics: A Methodology for the Health Sciences
[2]   Gene expression profiling identifies molecular subtypes of inflammatory breast cancer [J].
Bertucci, F ;
Finetti, P ;
Rougemont, J ;
Charafe-Jauffret, E ;
Cervera, N ;
Tarpin, C ;
Nguyen, C ;
Xerri, L ;
Houlgatte, M ;
Jacquemier, J ;
Viens, P ;
Birnbaum, D .
CANCER RESEARCH, 2005, 65 (06) :2170-2178
[3]   Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival [J].
Chang, HY ;
Nuyten, DSA ;
Sneddon, JB ;
Hastie, T ;
Tibshirani, R ;
Sorlie, T ;
Dai, HY ;
He, YDD ;
van't Veer, LJ ;
Bartelink, H ;
van de Rijn, M ;
Brown, PO ;
van de Vijver, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (10) :3738-3743
[4]   Gene expression signature of fibroblast serum response predicts human cancer progression: Similarities between tumors and wounds [J].
Chang, HY ;
Sneddon, JB ;
Alizadeh, AA ;
Sood, R ;
West, RB ;
Montgomery, K ;
Chi, JT ;
van de Rijn, M ;
Botstein, D ;
Brown, PO .
PLOS BIOLOGY, 2004, 2 (02) :206-214
[5]   A two-gene expression ratio of homeobox 13 and interleukin-17B receptor for prediction of recurrence and survival in women receiving adjuvant tamoxifen [J].
Goetz, MP ;
Suman, VJ ;
Ingle, JN ;
Nibbe, AM ;
Visscher, DW ;
Reynolds, CA ;
Lingle, WL ;
Erlander, M ;
Ma, XJ ;
Sgroi, DC ;
Perez, EA ;
Couch, FJ .
CLINICAL CANCER RESEARCH, 2006, 12 (07) :2080-2087
[6]   The molecular portraits of breast tumors are conserved across microarray platforms [J].
Hu, Zhiyuan ;
Fan, Cheng ;
Oh, Daniel S. ;
Marron, J. S. ;
He, Xiaping ;
Qaqish, Bahjat F. ;
Livasy, Chad ;
Carey, Lisa A. ;
Reynolds, Evangeline ;
Dressler, Lynn ;
Nobel, Andrew ;
Parker, Joel ;
Ewend, Matthew G. ;
Sawyer, Lynda R. ;
Wu, Junyuan ;
Liu, Yudong ;
Nanda, Rita ;
Tretiakova, Maria ;
Orrico, Alejandra Ruiz ;
Dreher, Donna ;
Palazzo, Juan P. ;
Perreard, Laurent ;
Nelson, Edward ;
Mone, Mary ;
Hansen, Heidi ;
Mullins, Michael ;
Quackenbush, John F. ;
Ellis, Matthew J. ;
Olopade, Olufunmilayo I. ;
Bernard, Philip S. ;
Perou, Charles M. .
BMC GENOMICS, 2006, 7 (1)
[7]   A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen [J].
Ma, XJ ;
Wang, ZC ;
Ryan, PD ;
Isakoff, SJ ;
Barmettler, A ;
Fuller, A ;
Muir, B ;
Mohapatra, G ;
Salunga, R ;
Tuggle, JT ;
Tran, Y ;
Tran, D ;
Tassin, A ;
Amon, P ;
Wang, W ;
Wang, W ;
Enright, E ;
Stecker, K ;
Estepa-Sabal, E ;
Smith, B ;
Younger, J ;
Balis, U ;
Michaelson, J ;
Bhan, A ;
Habin, K ;
Baer, TM ;
Brugge, J ;
Haber, DA ;
Erlander, MG ;
Sgroi, DC .
CANCER CELL, 2004, 5 (06) :607-616
[8]   A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer [J].
Paik, S ;
Shak, S ;
Tang, G ;
Kim, C ;
Baker, J ;
Cronin, M ;
Baehner, FL ;
Walker, MG ;
Watson, D ;
Park, T ;
Hiller, W ;
Fisher, ER ;
Wickerham, DL ;
Bryant, J ;
Wolmark, N .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 351 (27) :2817-2826
[9]  
PAIK S, IN PRESS J CLIN ONCO
[10]   Molecular portraits of human breast tumours [J].
Perou, CM ;
Sorlie, T ;
Eisen, MB ;
van de Rijn, M ;
Jeffrey, SS ;
Rees, CA ;
Pollack, JR ;
Ross, DT ;
Johnsen, H ;
Akslen, LA ;
Fluge, O ;
Pergamenschikov, A ;
Williams, C ;
Zhu, SX ;
Lonning, PE ;
Borresen-Dale, AL ;
Brown, PO ;
Botstein, D .
NATURE, 2000, 406 (6797) :747-752