Research on a Tool Wear Monitoring Algorithm Based on Residual Dense Network

被引:10
作者
Li, Yiting [1 ]
Xie, Qingsheng [1 ]
Huang, Haisong [1 ]
Chen, Qipeng [1 ]
机构
[1] Guizhou Univ, Key Lab Adv Mfg Technol, Minist Educ, Guiyang 550025, Guizhou, Peoples R China
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 06期
基金
中国国家自然科学基金;
关键词
tool wear; residual dense network; wavelet denoising; convolutional neural network;
D O I
10.3390/sym11060809
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To accurately and efficiently detect tool wear values during production and processing activities, a new online detection model is proposed called the Residual Dense Network (RDN). The model is created with two main steps: Firstly, the time-domain signals for a cutting tool are obtained (e.g., using acceleration sensors); these signals are processed to denoise and segmented to provide a larger number of uniform samples. This processing helps to improve the robustness of the model. Secondly, a new deep convolutional neural network is proposed to extract features adaptively, by combining the idea of a recursive residual network and a dense network. Notably, this method is specifically tailored to the tool wear value detection problem. In this way, the limitations of traditional manual feature extraction steps can be avoided. The experimental results demonstrate that the proposed method is promising in terms of detection accuracy and speed; it provides a new way to detect tool wear values in practical industrial scenarios.
引用
收藏
页数:19
相关论文
共 26 条
[1]  
[Anonymous], ARXIV14091556
[2]  
[Anonymous], J ELECT MEASURE INST
[3]   Application of digital image processing in tool condition monitoring: A review [J].
Dutta, S. ;
Pal, S. K. ;
Mukhopadhyay, S. ;
Sen, R. .
CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2013, 6 (03) :212-232
[4]  
Er, 2009, ANN C PHM SOC, P1
[5]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[8]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[9]  
Ioffe S., 2015, P ICML, P1
[10]   Bearing Fault Diagnosis Using Fully-Connected Winner-Take-All Autoencoder [J].
Li, Chuanhao ;
Zhang, Wei ;
Peng, Gaoliang ;
Liu, Shaohui .
IEEE ACCESS, 2018, 6 :6103-6115