Skew Brownian motion-type of extensions

被引:3
作者
VuolleApiala, J
机构
[1] Department of Mathematics, SF-00014 Helsinki, P.O. Box 4
关键词
Feller process; skew Brownian motion; excursion theory; entrance law;
D O I
10.1007/BF02214254
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a class of possible extensions of a given symmetric Feller process Z, from R\{0} to the entire real line R, depending on a parameter alpha is an element of [0, 1]. It is proved that the proposed extension exists if alpha = 1/2; for alpha not equal 1/2, exists if and only if Z(t) does not jump over 0 (e.g., if Z(t) is a diffusion).
引用
收藏
页码:853 / 861
页数:9
相关论文
共 50 条
[31]   An explicit representation of the transition densities of the skew Brownian motion with drift and two semipermeable barriers [J].
Dereudre, David ;
Mazzonetto, Sara ;
Roelly, Sylvie .
MONTE CARLO METHODS AND APPLICATIONS, 2016, 22 (01) :1-23
[32]   POINTWISE WEAK EXISTENCE OF DISTORTED SKEW BROWNIAN MOTION WITH RESPECT TO DISCONTINUOUS MUCKENHOUPT WEIGHTS [J].
Shin, Jiyong ;
Trutnau, Gerald .
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 59 (01) :157-170
[33]   A new closed-form formula for pricing European options under a skew Brownian motion [J].
Zhu, Song-Ping ;
He, Xin-Jiang .
EUROPEAN JOURNAL OF FINANCE, 2018, 24 (12) :1063-1074
[34]   SECOND ERRATA TO "OCCUPATION AND LOCAL TIMES FOR SKEW BROWNIAN MOTION WITH APPLICATIONS TO DISPERSION ACROSS AN INTERFACE" [J].
Appuhamillage, Thilanka ;
Bokil, Vrushali ;
Thomann, Enrique ;
Waymire, Edward ;
Wood, Brian .
ANNALS OF APPLIED PROBABILITY, 2024, 34 (06) :5842-5844
[35]   Stochastic calculus for Brownian motion on a Brownian fracture [J].
Khoshnevisan, D ;
Lewis, TM .
ANNALS OF APPLIED PROBABILITY, 1999, 9 (03) :629-667
[36]   Spinning Brownian motion [J].
Duarte, Mauricio A. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) :4178-4203
[37]   Modeling volatility of disaster-affected populations: A non-homogeneous geometric-skew Brownian motion approach [J].
Ascione, Giacomo ;
Bufalo, Michele ;
Orlando, Giuseppe .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130
[38]   OCCUPATION AND LOCAL TIMES FOR SKEW BROWNIAN MOTION WITH APPLICATIONS TO DISPERSION ACROSS AN INTERFACE (vol 21, pg 183, 2011) [J].
Appuhamillage, Thilanka ;
Bokil, Vrushali ;
Thomann, Enrique ;
Waymire, Edward ;
Wood, Brian .
ANNALS OF APPLIED PROBABILITY, 2011, 21 (05) :2050-2051
[39]   Excursion theory for Brownian motion indexed by the Brownian tree [J].
Abraham, Celine ;
Le Gall, Jean-Francois .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (12) :2951-3016
[40]   VARIABLY SKEWED BROWNIAN MOTION [J].
Barlow, Martin ;
Burdzy, Krzysztof ;
Kaspi, Haya ;
Mandelbaum, Avi .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 :57-66