A Smart Trap for Counting Olive Moths Based on the Internet of Things and Deep Learning

被引:1
作者
Mdhaffar, Afef [1 ,3 ]
Zalila, Bechir [1 ,3 ]
Moalla, Racem [3 ]
Kharrat, Ayoub [3 ]
Rebai, Omar [3 ]
Hsairi, Mohamed Melek [3 ]
Sallemi, Ahmed [3 ]
Kobbi, Hsouna [3 ]
Kolsi, Amel [2 ]
Chatti, Dorsaf [2 ]
Jmaiel, Mohamed [1 ,3 ]
Freisleben, Bernd [4 ]
机构
[1] Univ Sfax, ReDCAD Lab, ENIS, BP 1173, Sfax, Tunisia
[2] Olive Inst Sfax, Sfax, Tunisia
[3] Digital Res Ctr Sfax, Sfax, Tunisia
[4] Univ Marburg, Dept Math & Comp Sci, Marburg, Germany
来源
2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA) | 2022年
关键词
IoT; AI; smart trap; olive moth (Prays oleae); insect detection; deep learning; PraysDB dataset;
D O I
10.1109/AICCSA56895.2022.10017905
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel smart trap for counting olive moths using Internet of Things principles and deep learning algorithms. The smart trap takes a picture of the captured insects once per day and processes it using a deep convolutional neural network to detect "Prays oleae" insects and count their number. Then, the results are transferred via a wireless connection to a backend cloud server. The proposed smart trap is designed to reduce power consumption as much as possible. Two deep neural network models (i.e., YOLO V5 and YOLO V7) are employed to detect and count Prays oleae insects, using our newly created Prays oleae dataset, PraysDB. Our experimental results demonstrate the detection quality, energy efficiency, and computational performance of our smart trap.
引用
收藏
页数:8
相关论文
共 15 条
  • [1] Bochkovskiy A., 2020, ARXIV 200410934
  • [2] Le AD, 2022, Arxiv, DOI [arXiv:2112.13341, 10.48550/arxiv.2112.1334137]
  • [3] InsectCV: A system for insect detection in the lab from trap images
    De Cesaro Junior, Telmo
    Rieder, Rafael
    Di Domenico, Jessica Regina
    Lau, Douglas
    [J]. ECOLOGICAL INFORMATICS, 2022, 67
  • [4] DIRT Dataset, DIRT ONL DET
  • [5] github, YOLO V7
  • [6] github, YOLO V6
  • [7] A Review of Yolo Algorithm Developments
    Jiang, Peiyuan
    Ergu, Daji
    Liu, Fangyao
    Cai, Ying
    Ma, Bo
    [J]. 8TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2020 & 2021): DEVELOPING GLOBAL DIGITAL ECONOMY AFTER COVID-19, 2022, 199 : 1066 - 1073
  • [8] DIRT: The Dacus Image Recognition Toolkit
    Kalamatianos, Romanos
    Karydis, Ioannis
    Doukakis, Dimitris
    Avlonitis, Markos
    [J]. JOURNAL OF IMAGING, 2018, 4 (11)
  • [9] YOLO-Based Deep Learning Framework for Olive Fruit Fly Detection and Counting
    Mamdouh, Nariman
    Khattab, Ahmed
    [J]. IEEE ACCESS, 2021, 9 : 84252 - 84262
  • [10] Mating Disruption of the Olive Moth Prays oleae (Bernard) in Olive Groves Using Aerosol Dispensers
    Ortiz, Antonio
    Porras, Andres
    Marti, Jordi
    Tudela, Antonio
    Rodriguez-Gonzalez, Alvaro
    Sambado, Paolo
    [J]. INSECTS, 2021, 12 (12)