The water vapour sorption characteristics and kinetics of different wool types

被引:11
作者
Ormondroyd, Graham Alan [1 ,3 ]
Curling, Simon F. [1 ]
Mansour, Elie [1 ]
Hill, Callum A. S. [2 ,3 ]
机构
[1] Bangor Univ, BioComposites Ctr, Bangor, Gwynedd, Wales
[2] Norwegian Inst Bioecon Res, As, Norway
[3] Univ Bath, Dept Architecture & Civil Engn, Bath, Avon, England
关键词
Wool; moisture; kinetics; modelling; relative humidity; PARALLEL EXPONENTIAL KINETICS; GLASSY-POLYMERS; FIBERS; ADSORPTION; BEHAVIOR; MODEL; DESORPTION; TRANSPORT; CELLULOSE; HYSTERESIS;
D O I
10.1080/00405000.2016.1224442
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
The water vapour sorption behaviour of a range of sheep wool types and alpaca was studied using dynamic vapour sorption. Sorption isotherms were interpreted using the polymer sorption model developed by Vrentas and Vrentas. Satisfactory fits were obtained for absorption and desorption isotherms with the adjustment of parameters outside the scope of what is allowed. This is possibly because the underlying Flory-Huggins approach does not take into account any clustering of sorbate within the polymer. Water clustering in the wool fibre, determined using the Zimm-Lundberg clustering function, starts above a fibre moisture content of approximately 20%. Sorption kinetics were analysed using the parallel exponential kinetics model, providing excellent fits and allowed for calculation of a fibre modulus at different relative humidities; the values were reasonable at the upper end of the hygroscopic range, but were overestimated at the lower end of the range.
引用
收藏
页码:1198 / 1210
页数:13
相关论文
共 60 条
[21]  
Jeffries R., 1960, J TEXT I T, V51, pT340, DOI [10.1080/19447026008659778, DOI 10.1080/19447026008659778]
[22]   The water vapor sorption behavior of a galactomannan cellulose nanocomposite film analyzed using parallel exponential kinetics and the Kelvin-Voigt viscoelastic model [J].
Keating, Barbara A. ;
Hill, Callum A. S. ;
Sun, Dongyang ;
English, Rob ;
Davies, Phil ;
McCue, Charles .
JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 129 (04) :2352-2359
[23]   Water in glassy carbohydrates: Opening it up at the nanolevel [J].
Kilburn, D ;
Claude, J ;
Mezzenga, R ;
Dlubek, G ;
Alam, A ;
Ubbink, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (33) :12436-12441
[24]   Propagation of temperature changes through textiles in humid atmospheres. Part I. - Rate of absorption of water vapour by wool fibres. [J].
King, G ;
Cassie, ABD .
TRANSACTIONS OF THE FARADAY SOCIETY, 1940, 35 (03) :0445-0453
[25]   A numeric model for the kinetics of water vapor sorption on cellulosic reinforcement fibers [J].
Kohler, R ;
Dück, R ;
Ausperger, B ;
Alex, R .
COMPOSITE INTERFACES, 2003, 10 (2-3) :255-276
[26]   A model for non-Fickian moisture transfer in wood [J].
Krabbenhoft, K ;
Damkilde, L .
MATERIALS AND STRUCTURES, 2004, 37 (273) :615-622
[27]  
LEROUX PL, 1957, TEXT RES J, V27, P1, DOI DOI 10.1177/004051755702700101
[28]   Water Sorption Behavior in Different Aromatic Ionomer Composites Analyzed with a "New Dual-Mode Sorption" Model [J].
Li, Yongli ;
Nguyen, Quang T. ;
Fatyeyeva, Kateryna ;
Marais, Stephane .
MACROMOLECULES, 2014, 47 (18) :6331-6342
[29]   Thermal analysis of merino wool fibres without internal lipids [J].
Marti, M. ;
Ramirez, R. ;
Manich, A. M. ;
Coderch, L. ;
Parra, J. L. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 104 (01) :545-551
[30]  
Matsuoka S, 1997, J APPL POLYM SCI, V64, P77