Connecting curves in higher dimensions

被引:3
作者
Byrne, Greg [1 ]
Gilmore, Robert [2 ]
Cebral, Juan [3 ]
机构
[1] Georgia Inst Technol, Ctr Nonlinear Sci, Atlanta, GA 30332 USA
[2] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA
[3] George Mason Univ, Ctr Computat Fluid Dynam, Fairfax, VA 22030 USA
关键词
chaos; connecting curves; vortex core curves; catastrophe theory; strange attractor;
D O I
10.1088/1751-8113/47/21/215101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Connecting curves have been shown to organize the rotational structure of strange attractors in three-dimensional dynamical systems. We extend the description of connecting curves and their properties to higher dimensions within a special class of differential dynamical systems. The general properties of connecting curves are derived and selection rules stated. Examples are presented to illustrate these properties for dynamical systems of dimension n = 3, 4, 5.
引用
收藏
页数:21
相关论文
共 9 条
[1]  
[Anonymous], 1971, STABILITE STRUCTUREL
[2]  
Arnold V. I., 1971, Russian Math. Surveys, V26, P29
[3]   Connecting curves for dynamical systems [J].
Gilmore, R. ;
Ginoux, Jean-Marc ;
Jones, Timothy ;
Letellier, C. ;
Freitas, U. S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (25)
[4]  
Gilmore R., 1981, Catastrophe theory for scientists and engineers
[5]  
Peikert R., 1999, Proceedings Visualization '99 (Cat. No.99CB37067), P263, DOI 10.1109/VISUAL.1999.809896
[6]  
Poston T., 1978, CATASTROPHE THEORY A
[7]  
Press W. H., 2002, NUMERICAL RECIPES C
[8]   A higher-order method for finding vortex core lines [J].
Roth, M ;
Peikert, R .
VISUALIZATION '98, PROCEEDINGS, 1998, :143-+
[9]  
Zeeman E C, 1976, CATASTROPHE THEORY S