ON SOME EXCEPTIONAL SETS IN ENGEL EXPANSIONS AND HAUSDORFF DIMENSIONS

被引:3
作者
Liu, Jia [1 ]
机构
[1] Anhui Univ Finance & Econ, Inst Stat & Appl Math, Bengbu 233030, Peoples R China
基金
中国国家自然科学基金;
关键词
Engel Expansions; Exceptional Set; Hausdorff Dimension;
D O I
10.1142/S0218348X20501406
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any x is an element of (0, 1], let the infinite series Sigma n=1 infinity</mml:msubsup> <mml:mfrac>1 d1(x)d2(x)dn(x)</mml:mfrac> be the Engel expansion of x. Suppose psi : N -> + is a strictly increasing function with limn -> infinity psi (n) = infinity and let E(psi), Esup(psi) and Einf(psi) be defined as the sets of numbers x is an element of (0, 1] for which the limit, upper limit and lower limit of <mml:mfrac>log dn(x) psi (n)</mml:mfrac> is equal to 1. In this paper, we qualify the size of the set E(psi), Esup(psi) and <mml:msub>Einf(psi) in the sense of Hausdorff dimension and show that these three dimensions can be different.
引用
收藏
页数:9
相关论文
共 11 条
  • [1] FALCONER K. J., 2003, Fractal geometry, Vsecond
  • [2] Fang L. L., ARXIV200107939V1
  • [3] Hausdorff dimension of certain sets arising in Engel expansions
    Fang, Lulu
    Wu, Min
    [J]. NONLINEARITY, 2018, 31 (05) : 2105 - 2125
  • [4] Galambos J., 1976, Lecture Notes in Mathematics, V502
  • [5] Upper and lower fast Khintchine spectra in continued fractions
    Liao, Lingmin
    Rams, Micha
    [J]. MONATSHEFTE FUR MATHEMATIK, 2016, 180 (01): : 65 - 81
  • [6] Some exceptional sets in Engel expansions
    Liu, YY
    Wu, J
    [J]. NONLINEARITY, 2003, 16 (02) : 559 - 566
  • [7] Hausdorff dimensions in Engel expansions
    Liu, YY
    Wu, J
    [J]. ACTA ARITHMETICA, 2001, 99 (01) : 79 - 83
  • [8] Hausdorff dimensions of some exceptional sets in Engel expansions
    Lu, Meiying
    Liu, Jia
    [J]. JOURNAL OF NUMBER THEORY, 2018, 185 : 490 - 498
  • [9] SLOW GROWTH RATE OF THE DIGITS IN ENGEL EXPANSIONS
    Shang, Lei
    Wu, Min
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (03)
  • [10] A problem of Galambos on Engel expansions
    Wu, J
    [J]. ACTA ARITHMETICA, 2000, 92 (04) : 383 - 386