Parallel proximal point methods for systems of vector optimization problems on Hadamard manifolds without convexity

被引:76
作者
Ceng, L. C. [1 ]
Li, X. [2 ]
Qin, X. [3 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai, Peoples R China
[2] Southwest Petr Univ, Sch Sci, Chengdu, Sichuan, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua, Zhejiang, Peoples R China
关键词
Systems of vector optimization problems; Hadamard manifold; parallel proximal point method; VARIATIONAL-INEQUALITIES; STRONG-CONVERGENCE; MULTIOBJECTIVE OPTIMIZATION; NONSMOOTH ANALYSIS; GENERAL SYSTEM; ALGORITHM;
D O I
10.1080/02331934.2019.1625354
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, the local weak Pareto optimality conditions for nonsmooth vector optimization problems are presented on Hadamard manifolds. Some convergence results of the parallel proximal point algorithms for finding a solution of vector optimization problems are established.
引用
收藏
页码:357 / 383
页数:27
相关论文
共 32 条
[1]  
[Anonymous], 1985, NONLINEAR FUNCTION 2
[2]   Regularization of proximal point algorithms in Hadamard manifolds [J].
Ansari, Qamrul Hasan ;
Babu, Feeroz ;
Yao, Jen-Chih .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (01)
[3]   Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds [J].
Azagra, D ;
Ferrera, J ;
López-Mesas, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 220 (02) :304-361
[4]   A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds [J].
Bento, G. C. ;
Cruz Neto, J. X. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (01) :125-137
[5]   Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization of Hadamard Manifolds [J].
Bento, Glaydston de C. ;
da Cruz Neto, Joao Xavier ;
de Meireles, Lucas V. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 179 (01) :37-52
[6]   Proximal point method for vector optimization on Hadamard manifolds [J].
Bento, Glaydston de C. ;
Ferreira, Orizon P. ;
Pereira, Yuri R. L. .
OPERATIONS RESEARCH LETTERS, 2018, 46 (01) :13-18
[7]   Proximal methods in vector optimization [J].
Bonnel, H ;
Iusem, AN ;
Svaiter, BF .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (04) :953-970
[8]   Hybrid Approximate Proximal Method with Auxiliary Variational Inequality for Vector Optimization [J].
Ceng, L. C. ;
Mordukhovich, B. S. ;
Yao, J. C. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 146 (02) :267-303
[9]   Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities [J].
Ceng, Lu-Chuan ;
Wang, Chang-yu ;
Yao, Jen-Chih .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2008, 67 (03) :375-390
[10]   Approximate proximal methods in vector optimization [J].
Ceng, Lu-Chuan ;
Yao, Jen-Chih .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 183 (01) :1-19