Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery

被引:133
作者
Shu, Gequn [1 ]
Gao, Yuanyuan [1 ]
Tian, Hua [1 ]
Wei, Haiqiao [1 ]
Liang, Xingyu [1 ]
机构
[1] Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Engine waste heat; Organic Rankine Cycle (ORC); Mixtures based on hydrocarbons; Thermodynamic analysis; WORKING FLUIDS; ZEOTROPIC MIXTURES; THERMODYNAMIC ANALYSIS; TEMPERATURE; ALKANES;
D O I
10.1016/j.energy.2014.07.007
中图分类号
O414.1 [热力学];
学科分类号
摘要
For high temperature ORC (Organic Rankine Cycle) used in engine waste heat recovery, it's very critical to select a high temperature working fluid. HCs (Hydrocarbons) usually have excellent cycle performance, but the flammability limits their practical application. Considering that some retardants can be used to suppress flammability, the paper presents an application of mixtures based on hydrocarbons blending with refrigerant retardants to engine waste heat ORC. Three pure hydrocarbons (cyclopentane, cyclohexane, benzene) and two retardants (R11, R123) are selected for combination. Thermal efficiency and exergy loss are selected as the main objective functions. Based on thermodynamic model, the effects of retardants mass fraction, evaporation temperature and IHE (internal heat exchanger) are investigated. Results show that zeotropic mixtures do have higher thermal efficiency and lower exergy loss than pure fluids, at a certain mixture ratio. There exists the OMR (optimal mixture ratio) for different mixtures, and it changes with the evaporation temperature. When adding IHE to system, cycle performance could be obviously improved, and for benzene/R11 (0.7/0.3), the efficiency growth is about 7.12%similar to 9.72%. Using it, the maximum thermal efficiency of the system can achieve 16.7%, and minimum exergy loss is only 30.76 kW. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:428 / 438
页数:11
相关论文
共 26 条
[1]   Multicomponent working fluids for organic rankine cycles (ORCs) [J].
Angelino, G ;
Di Paliano, PC .
ENERGY, 1998, 23 (06) :449-463
[2]  
[Anonymous], ZEOTROPIC MIXTURES H
[3]   Thermodynamic analysis of an organic Rankine cycle for waste heat recovery from gas turbines [J].
Carcasci, Carlo ;
Ferraro, Riccardo ;
Miliotti, Edoardo .
ENERGY, 2014, 65 :91-100
[4]   Alternative ORC bottoming cycles FOR combined cycle power plants [J].
Chacartegui, R. ;
Sanchez, D. ;
Munoz, J. M. ;
Sanchez, T. .
APPLIED ENERGY, 2009, 86 (10) :2162-2170
[5]   A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power [J].
Chen, Huijuan ;
Goswami, D. Yogi ;
Rahman, Muhammad M. ;
Stefanakos, Elias K. .
ENERGY, 2011, 36 (01) :549-555
[6]   Potential of zeotropic mixtures as working fluids in organic Rankine cycles [J].
Chys, M. ;
van den Broek, M. ;
Vanslambrouck, B. ;
De Paepe, M. .
ENERGY, 2012, 44 (01) :623-632
[7]   Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery [J].
Dai, Baomin ;
Li, Minxia ;
Ma, Yitai .
ENERGY, 2014, 64 :942-952
[8]   Evaluation of isopentane, R-245fa and their mixtures as working fluids for organic Rankine cycles [J].
Garg, Pardeep ;
Kumar, Pramod ;
Srinivasan, Kandadai ;
Dutta, Pradip .
APPLIED THERMAL ENGINEERING, 2013, 51 (1-2) :292-300
[9]   Zeotropic mixtures as working fluids in Organic Rankine Cycles for low-enthalpy geothermal resources [J].
Heberle, Florian ;
Preissinger, Markus ;
Brueggemann, Dieter .
RENEWABLE ENERGY, 2012, 37 (01) :364-370
[10]  
Lemmon E.W., 2018, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport properties-REFPROP, DOI [DOI 10.18434/T4D303, 10.18434/T4D303]