Prediction and prioritization of neoantigens: integration of RNA sequencing data with whole-exome sequencing

被引:54
作者
Karasaki, Takahiro [1 ]
Nagayama, Kazuhiro [1 ]
Kuwano, Hideki [1 ]
Nitadori, Jun-ichi [1 ]
Sato, Masaaki [1 ]
Anraku, Masaki [1 ]
Hosoi, Akihiro [2 ,3 ]
Matsushita, Hirokazu [2 ]
Takazawa, Masaki [4 ]
Ohara, Osamu [4 ]
Nakajima, Jun [1 ]
Kakimi, Kazuhiro [2 ]
机构
[1] Univ Tokyo, Dept Thorac Surg, Grad Sch Med, Tokyo, Japan
[2] Tokyo Univ Hosp, Dept Immunotherapeut, Tokyo, Japan
[3] Medinet Co Ltd, Yokohama, Kanagawa, Japan
[4] Kazusa DNA Res Inst, Dev Technol Dept, Kisarazu, Japan
基金
日本学术振兴会;
关键词
Lung cancer; neoantigen; next-generation sequencing; RNA-Seq; whole-exome sequencing; SOMATIC MUTATIONS; T-CELLS; CANCER; TUMOR; REVEALS; NETMHCPAN; DISCOVERY; FRAMEWORK; ANTIGENS; BINDING;
D O I
10.1111/cas.13131
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The importance of neoantigens for cancer immunity is now well-acknowledged. However, there are diverse strategies for predicting and prioritizing candidate neoantigens, and thus reported neoantigen loads vary a great deal. To clarify this issue, we compared the numbers of neoantigen candidates predicted by four currently utilized strategies. Whole-exome sequencing and RNA sequencing (RNA-Seq) of four non-small-cell lung cancer patients was carried out. We identified 361 somatic missense mutations from which 224 candidate neoantigens were predicted using MHC class I binding affinity prediction software (strategy I). Of these, 207 exceeded the set threshold of gene expression (fragments per kilobase of transcript per million fragments mapped 1), resulting in 124 candidate neoantigens (strategy II). To verify mutant mRNA expression, sequencing of amplicons from tumor cDNA including each mutation was undertaken; 204 of the 207 mutations were successfully sequenced, yielding 121 mutant mRNA sequences, resulting in 75 candidate neoantigens (strategy III). Sequence information was extracted from RNA-Seq to confirm the presence of mutated mRNA. Variant allele frequencies 0.04 in RNA-Seq were found for 117 of the 207 mutations and regarded as expressed in the tumor, and finally, 72 candidate neoantigens were predicted (strategy IV). Without additional amplicon sequencing of cDNA, strategy IV was comparable to strategy III. We therefore propose strategy IV as a practical and appropriate strategy to predict candidate neoantigens fully utilizing currently available information. It is of note that different neoantigen loads were deduced from the same tumors depending on the strategies applied.
引用
收藏
页码:170 / 177
页数:8
相关论文
共 27 条
[1]   A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells [J].
Carreno, Beatriz M. ;
Magrini, Vincent ;
Becker-Hapak, Michelle ;
Kaabinejadian, Saghar ;
Hundal, Jasreet ;
Petti, Allegra A. ;
Ly, Amy ;
Lie, Wen-Rong ;
Hildebrand, William H. ;
Mardis, Elaine R. ;
Linette, Gerald P. .
SCIENCE, 2015, 348 (6236) :803-808
[2]   Exploiting the Mutanome for Tumor Vaccination [J].
Castle, John C. ;
Kreiter, Sebastian ;
Diekmann, Jan ;
Loewer, Martin ;
Van de Roemer, Niels ;
de Graaf, Jos ;
Selmi, Abderraouf ;
Diken, Mustafa ;
Boegel, Sebastian ;
Paret, Claudia ;
Koslowski, Michael ;
Kuhn, Andreas N. ;
Britten, Cedrik M. ;
Huber, Christoph ;
Tuereci, Oezlem ;
Sahin, Ugur .
CANCER RESEARCH, 2012, 72 (05) :1081-1091
[3]   Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples [J].
Cibulskis, Kristian ;
Lawrence, Michael S. ;
Carter, Scott L. ;
Sivachenko, Andrey ;
Jaffe, David ;
Sougnez, Carrie ;
Gabriel, Stacey ;
Meyerson, Matthew ;
Lander, Eric S. ;
Getz, Gad .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :213-219
[4]   Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes [J].
Cohen, Cyrille J. ;
Gartner, Jared J. ;
Horovitz-Fried, Miryam ;
Shamalov, Katerina ;
Trebska-McGowan, Kasia ;
Bliskovsky, Valery V. ;
Parkhurst, Maria R. ;
Ankri, Chen ;
Prickett, Todd. D. ;
Crystal, Jessica S. ;
Li, Yong F. ;
El-Gamil, Mona ;
Rosenberg, Steven A. ;
Robbins, Paul F. .
JOURNAL OF CLINICAL INVESTIGATION, 2015, 125 (10) :3981-3991
[5]   Tumor neoantigens: building a framework for personalized cancer immunotherapy [J].
Gubin, Matthew M. ;
Artyomov, Maxim N. ;
Mardis, Elaine R. ;
Schreiber, Robert D. .
JOURNAL OF CLINICAL INVESTIGATION, 2015, 125 (09) :3413-3421
[6]   NetMHCpan, a method for MHC class I binding prediction beyond humans [J].
Hoof, Ilka ;
Peters, Bjoern ;
Sidney, John ;
Pedersen, Lasse Eggers ;
Sette, Alessandro ;
Lund, Ole ;
Buus, Soren ;
Nielsen, Morten .
IMMUNOGENETICS, 2009, 61 (01) :1-13
[7]   Identification of Individual Cancer-Specific Somatic Mutations for Neoantigen-Based Immunotherapy of Lung Cancer [J].
Karasaki, Takahiro ;
Nagayama, Kazuhiro ;
Kawashima, Mitsuaki ;
Hiyama, Noriko ;
Murayama, Tomonori ;
Kuwano, Hideki ;
Nitadori, Jun-ichi ;
Anraku, Masaki ;
Sato, Masaaki ;
Miyai, Manami ;
Hosoi, Akihiro ;
Matsushita, Hirokazu ;
Kikugawa, Shingo ;
Matoba, Ryo ;
Ohara, Osamu ;
Kakimi, Kazuhiro ;
Nakajima, Jun .
JOURNAL OF THORACIC ONCOLOGY, 2016, 11 (03) :324-333
[8]   VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing [J].
Koboldt, Daniel C. ;
Zhang, Qunyuan ;
Larson, David E. ;
Shen, Dong ;
McLellan, Michael D. ;
Lin, Ling ;
Miller, Christopher A. ;
Mardis, Elaine R. ;
Ding, Li ;
Wilson, Richard K. .
GENOME RESEARCH, 2012, 22 (03) :568-576
[9]   Mutant MHC class II epitopes drive therapeutic immune responses to cancer [J].
Kreiter, Sebastian ;
Vormehr, Mathias ;
van de Roemer, Niels ;
Diken, Mustafa ;
Loewer, Martin ;
Diekmann, Jan ;
Boegel, Sebastian ;
Schroers, Barbara ;
Vascotto, Fulvia ;
Castle, John C. ;
Tadmor, Arbel D. ;
Schoenberger, Stephen P. ;
Huber, Christoph ;
Tuereci, Oezlem ;
Sahin, Ugur .
NATURE, 2015, 520 (7549) :692-U269
[10]   Fast and accurate short read alignment with Burrows-Wheeler transform [J].
Li, Heng ;
Durbin, Richard .
BIOINFORMATICS, 2009, 25 (14) :1754-1760