Harmonization strategies for multicenter radiomics investigations

被引:117
作者
Da-Ano, R. [1 ]
Visvikis, D. [1 ]
Hatt, M. [1 ]
机构
[1] Univ Brest, LaTiM, INSERM, UMR 1101, Brest, France
基金
欧盟地平线“2020”;
关键词
radiomics; batch effect removal; deep learning; data integration; CELL LUNG-CANCER; TEXTURAL FEATURES; PROSTATE-CANCER; HETEROGENEITY QUANTIFICATION; GENE-EXPRESSION; PET IMAGES; F-18-FDG; REPRODUCIBILITY; IMPACT; RECONSTRUCTION;
D O I
10.1088/1361-6560/aba798
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Carrying out large multicenter studies is one of the key goals to be achieved towards a faster transfer of the radiomics approach in the clinical setting. This requires large-scale radiomics data analysis, hence the need for integrating radiomic features extracted from images acquired in different centers. This is challenging as radiomic features exhibit variable sensitivity to differences in scanner model, acquisition protocols and reconstruction settings, which is similar to the so-called 'batch-effects' in genomics studies. In this review we discuss existing methods to perform data integration with the aid of reducing the unwanted variation associated with batch effects. We also discuss the future potential role of deep learning methods in providing solutions for addressing radiomic multicentre studies.
引用
收藏
页数:15
相关论文
共 91 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies [J].
Aide, Nicolas ;
Lasnon, Charline ;
Veit-Haibach, Patrick ;
Sera, Terez ;
Sattler, Bernhard ;
Boellaard, Ronald .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 :S17-S31
[3]   Feature normalization and likelihood-based similarity measures for image retrieval [J].
Aksoy, S ;
Haralick, RM .
PATTERN RECOGNITION LETTERS, 2001, 22 (05) :563-582
[4]   Neural network training for cross-protocol radiomic feature standardization in computed tomography [J].
Andrearczyk, Vincent ;
Depeursinge, Adrien ;
Muller, Henning .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)
[5]   Reproducibility and Prognosis of Quantitative Features Extracted from CT Images [J].
Balagurunathan, Yoganand ;
Gu, Yuhua ;
Wang, Hua ;
Kumar, Virendra ;
Grove, Olya ;
Hawkins, Sam ;
Kim, Jongphil ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Gatenby, Robert A. ;
Gillies, Robert J. .
TRANSLATIONAL ONCOLOGY, 2014, 7 (01) :72-87
[6]   Adjustment of systematic microarray data biases [J].
Benito, M ;
Parker, J ;
Du, Q ;
Wu, JY ;
Xang, D ;
Perou, CM ;
Marron, JS .
BIOINFORMATICS, 2004, 20 (01) :105-114
[7]   FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0 [J].
Boellaard, Ronald ;
Delgado-Bolton, Roberto ;
Oyen, Wim J. G. ;
Giammarile, Francesco ;
Tatsch, Klaus ;
Eschner, Wolfgang ;
Verzijlbergen, Fred J. ;
Barrington, Sally F. ;
Pike, Lucy C. ;
Weber, Wolfgang A. ;
Stroobants, Sigrid ;
Delbeke, Dominique ;
Donohoe, Kevin J. ;
Holbrook, Scott ;
Graham, Michael M. ;
Testanera, Giorgio ;
Hoekstra, Otto S. ;
Zijlstra, Josee ;
Visser, Eric ;
Hoekstra, Corneline J. ;
Pruim, Jan ;
Willemsen, Antoon ;
Arends, Bertjan ;
Kotzerke, Joerg ;
Bockisch, Andreas ;
Beyer, Thomas ;
Chiti, Arturo ;
Krause, Bernd J. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (02) :328-354
[8]   Creating Robust Predictive Radiomic Models for Data From Independent Institutions Using Normalization [J].
Chatterjee, Avishek ;
Vallieres, Martin ;
Dohan, Anthony ;
Levesque, Ives R. ;
Ueno, Yoshiko ;
Saif, Sameh ;
Reinhold, Caroline ;
Seuntjens, Jan .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) :210-215
[9]   Removing Batch Effects in Analysis of Expression Microarray Data: An Evaluation of Six Batch Adjustment Methods [J].
Chen, Chao ;
Grennan, Kay ;
Badner, Judith ;
Zhang, Dandan ;
Gershon, Elliot ;
Jin, Li ;
Liu, Chunyu .
PLOS ONE, 2011, 6 (02)
[10]   Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses [J].
Choe, Jooae ;
Lee, Sang Min ;
Do, Kyung-Hymn ;
Lee, Gaeun ;
Lee, June-Goo ;
Seo, Joon Beom .
RADIOLOGY, 2019, 292 (02) :365-373