Harmonization strategies for multicenter radiomics investigations

被引:114
作者
Da-Ano, R. [1 ]
Visvikis, D. [1 ]
Hatt, M. [1 ]
机构
[1] Univ Brest, LaTiM, INSERM, UMR 1101, Brest, France
基金
欧盟地平线“2020”;
关键词
radiomics; batch effect removal; deep learning; data integration; CELL LUNG-CANCER; TEXTURAL FEATURES; PROSTATE-CANCER; HETEROGENEITY QUANTIFICATION; GENE-EXPRESSION; PET IMAGES; F-18-FDG; REPRODUCIBILITY; IMPACT; RECONSTRUCTION;
D O I
10.1088/1361-6560/aba798
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Carrying out large multicenter studies is one of the key goals to be achieved towards a faster transfer of the radiomics approach in the clinical setting. This requires large-scale radiomics data analysis, hence the need for integrating radiomic features extracted from images acquired in different centers. This is challenging as radiomic features exhibit variable sensitivity to differences in scanner model, acquisition protocols and reconstruction settings, which is similar to the so-called 'batch-effects' in genomics studies. In this review we discuss existing methods to perform data integration with the aid of reducing the unwanted variation associated with batch effects. We also discuss the future potential role of deep learning methods in providing solutions for addressing radiomic multicentre studies.
引用
收藏
页数:15
相关论文
共 91 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies
    Aide, Nicolas
    Lasnon, Charline
    Veit-Haibach, Patrick
    Sera, Terez
    Sattler, Bernhard
    Boellaard, Ronald
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 : S17 - S31
  • [3] Feature normalization and likelihood-based similarity measures for image retrieval
    Aksoy, S
    Haralick, RM
    [J]. PATTERN RECOGNITION LETTERS, 2001, 22 (05) : 563 - 582
  • [4] Neural network training for cross-protocol radiomic feature standardization in computed tomography
    Andrearczyk, Vincent
    Depeursinge, Adrien
    Muller, Henning
    [J]. JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)
  • [5] Reproducibility and Prognosis of Quantitative Features Extracted from CT Images
    Balagurunathan, Yoganand
    Gu, Yuhua
    Wang, Hua
    Kumar, Virendra
    Grove, Olya
    Hawkins, Sam
    Kim, Jongphil
    Goldgof, Dmitry B.
    Hall, Lawrence O.
    Gatenby, Robert A.
    Gillies, Robert J.
    [J]. TRANSLATIONAL ONCOLOGY, 2014, 7 (01) : 72 - 87
  • [6] Adjustment of systematic microarray data biases
    Benito, M
    Parker, J
    Du, Q
    Wu, JY
    Xang, D
    Perou, CM
    Marron, JS
    [J]. BIOINFORMATICS, 2004, 20 (01) : 105 - 114
  • [7] FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0
    Boellaard, Ronald
    Delgado-Bolton, Roberto
    Oyen, Wim J. G.
    Giammarile, Francesco
    Tatsch, Klaus
    Eschner, Wolfgang
    Verzijlbergen, Fred J.
    Barrington, Sally F.
    Pike, Lucy C.
    Weber, Wolfgang A.
    Stroobants, Sigrid
    Delbeke, Dominique
    Donohoe, Kevin J.
    Holbrook, Scott
    Graham, Michael M.
    Testanera, Giorgio
    Hoekstra, Otto S.
    Zijlstra, Josee
    Visser, Eric
    Hoekstra, Corneline J.
    Pruim, Jan
    Willemsen, Antoon
    Arends, Bertjan
    Kotzerke, Joerg
    Bockisch, Andreas
    Beyer, Thomas
    Chiti, Arturo
    Krause, Bernd J.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (02) : 328 - 354
  • [8] Creating Robust Predictive Radiomic Models for Data From Independent Institutions Using Normalization
    Chatterjee, Avishek
    Vallieres, Martin
    Dohan, Anthony
    Levesque, Ives R.
    Ueno, Yoshiko
    Saif, Sameh
    Reinhold, Caroline
    Seuntjens, Jan
    [J]. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) : 210 - 215
  • [9] Removing Batch Effects in Analysis of Expression Microarray Data: An Evaluation of Six Batch Adjustment Methods
    Chen, Chao
    Grennan, Kay
    Badner, Judith
    Zhang, Dandan
    Gershon, Elliot
    Jin, Li
    Liu, Chunyu
    [J]. PLOS ONE, 2011, 6 (02):
  • [10] Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses
    Choe, Jooae
    Lee, Sang Min
    Do, Kyung-Hymn
    Lee, Gaeun
    Lee, June-Goo
    Seo, Joon Beom
    [J]. RADIOLOGY, 2019, 292 (02) : 365 - 373