Two dimensional silicon nanowalls for lithium ion batteries

被引:69
作者
Wan, Jiayu [1 ]
Kaplan, Alex F. [2 ]
Zheng, Jia [3 ]
Han, Xiaogang [1 ]
Chen, Yuchen [1 ]
Weadock, Nicholas J. [1 ]
Faenza, Nicholas [1 ]
Lacey, Steven [1 ]
Li, Teng [3 ]
Guo, Jay [2 ]
Hu, Liangbing [1 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[3] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
PERFORMANCE; ANODE; STORAGE; FABRICATION; ELECTRODES; NANOWIRES; NANOCOMPOSITE; STABILITY; FRACTURE; GROWTH;
D O I
10.1039/c3ta13546b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One-dimensional (1-D) nanostructures such as nanowires and nanotubes have been widely explored for anodes with high specific capacity in Li-ion batteries, which effectively release the mechanical stress to avoid structure pulverization. However, 1-D nanostructures typically have a high surface area, which leads to a large irreversible capacity in the first cycle due to a solid electrolyte interface (SEI) formation. Two dimensional (2-D) nanowalls can address the same challenges as 1-D nanostructures, with a much lower surface area. For the first time, we demonstrated a 2-D nanowall structure with silicon for Li-ion batteries. Excellent performance for the first Coulombic efficiency (CE) has been achieved. Such a 2-D nanowall structure can also be applied in other devices with improved performance where nanostructures are needed but a high surface area is problematic.
引用
收藏
页码:6051 / 6057
页数:7
相关论文
共 45 条
[11]   Alumina-Coated Patterned Amorphous Silicon as the Anode for a Lithium-Ion Battery with High Coulombic Efficiency [J].
He, Yu ;
Yu, Xiqian ;
Wang, Yanhong ;
Li, Hong ;
Huang, Xuejie .
ADVANCED MATERIALS, 2011, 23 (42) :4938-4941
[12]   Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes [J].
He, Yuping ;
Yang, Bo ;
Yang, Kaikun ;
Brown, Cameron ;
Ramasamy, Ramaraja ;
Wang, Howard ;
Lundgren, Cynthia ;
Zhao, Yiping .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (17) :8294-8303
[13]   Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries [J].
Hu, Yong-Sheng ;
Demir-Cakan, Rezan ;
Titirici, Maria-Magdalena ;
Mueller, Jens-Oliver ;
Schloegl, Robert ;
Antonietti, Markus ;
Maier, Joachim .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (09) :1645-1649
[14]   Electrospun Core-Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes [J].
Hwang, Tae Hoon ;
Lee, Yong Min ;
Kong, Byung-Seon ;
Seo, Jin-Seok ;
Choi, Jang Wook .
NANO LETTERS, 2012, 12 (02) :802-807
[15]  
Ji XL, 2009, NAT MATER, V8, P500, DOI [10.1038/NMAT2460, 10.1038/nmat2460]
[16]   Battery materials for ultrafast charging and discharging [J].
Kang, Byoungwoo ;
Ceder, Gerbrand .
NATURE, 2009, 458 (7235) :190-193
[17]   Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells [J].
Kang, Myung-Gyu ;
Park, Hui Joon ;
Ahn, Se Hyun ;
Guo, L. Jay .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (06) :1179-1184
[18]   High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography [J].
Kaplan, Alex F. ;
Xu, Ting ;
Guo, L. Jay .
APPLIED PHYSICS LETTERS, 2011, 99 (14)
[19]  
Kim H., 2008, ANGEW CHEM, V120, P10305, DOI DOI 10.1002/ANGE.200804355
[20]   Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material [J].
Kim, Hyesun ;
Cho, Jaephil .
NANO LETTERS, 2008, 8 (11) :3688-3691