Two dimensional silicon nanowalls for lithium ion batteries

被引:69
作者
Wan, Jiayu [1 ]
Kaplan, Alex F. [2 ]
Zheng, Jia [3 ]
Han, Xiaogang [1 ]
Chen, Yuchen [1 ]
Weadock, Nicholas J. [1 ]
Faenza, Nicholas [1 ]
Lacey, Steven [1 ]
Li, Teng [3 ]
Guo, Jay [2 ]
Hu, Liangbing [1 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[3] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
PERFORMANCE; ANODE; STORAGE; FABRICATION; ELECTRODES; NANOWIRES; NANOCOMPOSITE; STABILITY; FRACTURE; GROWTH;
D O I
10.1039/c3ta13546b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One-dimensional (1-D) nanostructures such as nanowires and nanotubes have been widely explored for anodes with high specific capacity in Li-ion batteries, which effectively release the mechanical stress to avoid structure pulverization. However, 1-D nanostructures typically have a high surface area, which leads to a large irreversible capacity in the first cycle due to a solid electrolyte interface (SEI) formation. Two dimensional (2-D) nanowalls can address the same challenges as 1-D nanostructures, with a much lower surface area. For the first time, we demonstrated a 2-D nanowall structure with silicon for Li-ion batteries. Excellent performance for the first Coulombic efficiency (CE) has been achieved. Such a 2-D nanowall structure can also be applied in other devices with improved performance where nanostructures are needed but a high surface area is problematic.
引用
收藏
页码:6051 / 6057
页数:7
相关论文
共 45 条
  • [11] Alumina-Coated Patterned Amorphous Silicon as the Anode for a Lithium-Ion Battery with High Coulombic Efficiency
    He, Yu
    Yu, Xiqian
    Wang, Yanhong
    Li, Hong
    Huang, Xuejie
    [J]. ADVANCED MATERIALS, 2011, 23 (42) : 4938 - 4941
  • [12] Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes
    He, Yuping
    Yang, Bo
    Yang, Kaikun
    Brown, Cameron
    Ramasamy, Ramaraja
    Wang, Howard
    Lundgren, Cynthia
    Zhao, Yiping
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (17) : 8294 - 8303
  • [13] Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries
    Hu, Yong-Sheng
    Demir-Cakan, Rezan
    Titirici, Maria-Magdalena
    Mueller, Jens-Oliver
    Schloegl, Robert
    Antonietti, Markus
    Maier, Joachim
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (09) : 1645 - 1649
  • [14] Electrospun Core-Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes
    Hwang, Tae Hoon
    Lee, Yong Min
    Kong, Byung-Seon
    Seo, Jin-Seok
    Choi, Jang Wook
    [J]. NANO LETTERS, 2012, 12 (02) : 802 - 807
  • [15] Ji XL, 2009, NAT MATER, V8, P500, DOI [10.1038/NMAT2460, 10.1038/nmat2460]
  • [16] Battery materials for ultrafast charging and discharging
    Kang, Byoungwoo
    Ceder, Gerbrand
    [J]. NATURE, 2009, 458 (7235) : 190 - 193
  • [17] Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells
    Kang, Myung-Gyu
    Park, Hui Joon
    Ahn, Se Hyun
    Guo, L. Jay
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (06) : 1179 - 1184
  • [18] High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography
    Kaplan, Alex F.
    Xu, Ting
    Guo, L. Jay
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (14)
  • [19] Kim H., 2008, ANGEW CHEM, V120, P10305, DOI DOI 10.1002/ANGE.200804355
  • [20] Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material
    Kim, Hyesun
    Cho, Jaephil
    [J]. NANO LETTERS, 2008, 8 (11) : 3688 - 3691