Two dimensional silicon nanowalls for lithium ion batteries

被引:69
作者
Wan, Jiayu [1 ]
Kaplan, Alex F. [2 ]
Zheng, Jia [3 ]
Han, Xiaogang [1 ]
Chen, Yuchen [1 ]
Weadock, Nicholas J. [1 ]
Faenza, Nicholas [1 ]
Lacey, Steven [1 ]
Li, Teng [3 ]
Guo, Jay [2 ]
Hu, Liangbing [1 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[3] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
PERFORMANCE; ANODE; STORAGE; FABRICATION; ELECTRODES; NANOWIRES; NANOCOMPOSITE; STABILITY; FRACTURE; GROWTH;
D O I
10.1039/c3ta13546b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One-dimensional (1-D) nanostructures such as nanowires and nanotubes have been widely explored for anodes with high specific capacity in Li-ion batteries, which effectively release the mechanical stress to avoid structure pulverization. However, 1-D nanostructures typically have a high surface area, which leads to a large irreversible capacity in the first cycle due to a solid electrolyte interface (SEI) formation. Two dimensional (2-D) nanowalls can address the same challenges as 1-D nanostructures, with a much lower surface area. For the first time, we demonstrated a 2-D nanowall structure with silicon for Li-ion batteries. Excellent performance for the first Coulombic efficiency (CE) has been achieved. Such a 2-D nanowall structure can also be applied in other devices with improved performance where nanostructures are needed but a high surface area is problematic.
引用
收藏
页码:6051 / 6057
页数:7
相关论文
共 45 条
[1]   High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates [J].
Ahn, Se Hyun ;
Guo, L. Jay .
ADVANCED MATERIALS, 2008, 20 (11) :2044-+
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   The Growth and Optical Properties of ZnO Nanowalls [J].
Brewster, Megan M. ;
Lu, Ming-Yen ;
Lim, Sung Keun ;
Smith, Matthew J. ;
Zhou, Xiang ;
Gradecak, Silvija .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (15) :1940-1945
[4]   Role of Oxygen Functional Groups in Carbon Nanotube/Graphene Freestanding Electrodes for High Performance Lithium Batteries [J].
Byon, Hye Ryung ;
Gallant, Betar M. ;
Lee, Seung Woo ;
Shao-Horn, Yang .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) :1037-1045
[5]   Hydrothermal carbon spheres containing silicon nanoparticles: synthesis and lithium storage performance [J].
Cakan, Rezan Demir ;
Titirici, Maria-Magdalena ;
Antonietti, Markus ;
Cui, Guanglei ;
Maier, Joachim ;
Hu, Yong-Sheng .
CHEMICAL COMMUNICATIONS, 2008, (32) :3759-3761
[6]   Cu-Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries [J].
Cao, Fei-Fei ;
Deng, Jun-Wen ;
Xin, Sen ;
Ji, Heng-Xing ;
Schmidt, Oliver G. ;
Wan, Li-Jun ;
Guo, Yu-Guo .
ADVANCED MATERIALS, 2011, 23 (38) :4415-+
[7]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[8]   Compliant polymer network-mediated fabrication of a bendable plastic crystal polymer electrolyte for flexible lithium-ion batteries [J].
Choi, Keun-Ho ;
Kim, Se-Hee ;
Ha, Hyo-Jeong ;
Kil, Eun-Hye ;
Lee, Chang Kee ;
Lee, Sang Bong ;
Shim, Jin Kie ;
Lee, Sang-Young .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (17) :5224-5231
[9]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[10]   In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon [J].
Hatchard, TD ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (06) :A838-A842