Two dimensional silicon nanowalls for lithium ion batteries

被引:69
作者
Wan, Jiayu [1 ]
Kaplan, Alex F. [2 ]
Zheng, Jia [3 ]
Han, Xiaogang [1 ]
Chen, Yuchen [1 ]
Weadock, Nicholas J. [1 ]
Faenza, Nicholas [1 ]
Lacey, Steven [1 ]
Li, Teng [3 ]
Guo, Jay [2 ]
Hu, Liangbing [1 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[3] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
PERFORMANCE; ANODE; STORAGE; FABRICATION; ELECTRODES; NANOWIRES; NANOCOMPOSITE; STABILITY; FRACTURE; GROWTH;
D O I
10.1039/c3ta13546b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One-dimensional (1-D) nanostructures such as nanowires and nanotubes have been widely explored for anodes with high specific capacity in Li-ion batteries, which effectively release the mechanical stress to avoid structure pulverization. However, 1-D nanostructures typically have a high surface area, which leads to a large irreversible capacity in the first cycle due to a solid electrolyte interface (SEI) formation. Two dimensional (2-D) nanowalls can address the same challenges as 1-D nanostructures, with a much lower surface area. For the first time, we demonstrated a 2-D nanowall structure with silicon for Li-ion batteries. Excellent performance for the first Coulombic efficiency (CE) has been achieved. Such a 2-D nanowall structure can also be applied in other devices with improved performance where nanostructures are needed but a high surface area is problematic.
引用
收藏
页码:6051 / 6057
页数:7
相关论文
共 45 条
  • [1] High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates
    Ahn, Se Hyun
    Guo, L. Jay
    [J]. ADVANCED MATERIALS, 2008, 20 (11) : 2044 - +
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] The Growth and Optical Properties of ZnO Nanowalls
    Brewster, Megan M.
    Lu, Ming-Yen
    Lim, Sung Keun
    Smith, Matthew J.
    Zhou, Xiang
    Gradecak, Silvija
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (15): : 1940 - 1945
  • [4] Role of Oxygen Functional Groups in Carbon Nanotube/Graphene Freestanding Electrodes for High Performance Lithium Batteries
    Byon, Hye Ryung
    Gallant, Betar M.
    Lee, Seung Woo
    Shao-Horn, Yang
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) : 1037 - 1045
  • [5] Hydrothermal carbon spheres containing silicon nanoparticles: synthesis and lithium storage performance
    Cakan, Rezan Demir
    Titirici, Maria-Magdalena
    Antonietti, Markus
    Cui, Guanglei
    Maier, Joachim
    Hu, Yong-Sheng
    [J]. CHEMICAL COMMUNICATIONS, 2008, (32) : 3759 - 3761
  • [6] Cu-Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries
    Cao, Fei-Fei
    Deng, Jun-Wen
    Xin, Sen
    Ji, Heng-Xing
    Schmidt, Oliver G.
    Wan, Li-Jun
    Guo, Yu-Guo
    [J]. ADVANCED MATERIALS, 2011, 23 (38) : 4415 - +
  • [7] High-performance lithium battery anodes using silicon nanowires
    Chan, Candace K.
    Peng, Hailin
    Liu, Gao
    McIlwrath, Kevin
    Zhang, Xiao Feng
    Huggins, Robert A.
    Cui, Yi
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (01) : 31 - 35
  • [8] Compliant polymer network-mediated fabrication of a bendable plastic crystal polymer electrolyte for flexible lithium-ion batteries
    Choi, Keun-Ho
    Kim, Se-Hee
    Ha, Hyo-Jeong
    Kil, Eun-Hye
    Lee, Chang Kee
    Lee, Sang Bong
    Shim, Jin Kie
    Lee, Sang-Young
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (17) : 5224 - 5231
  • [9] Challenges for Rechargeable Li Batteries
    Goodenough, John B.
    Kim, Youngsik
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (03) : 587 - 603
  • [10] In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon
    Hatchard, TD
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (06) : A838 - A842