Estimation of kinetic parameters in an S-system equation model for a metabolic reaction system using the Newton-Raphson method

被引:11
作者
Iwata, Michio [1 ]
Sriyudthsak, Kansuporn [2 ,3 ]
Hirai, Masami Yokota [2 ,3 ]
Shiraishi, Fumihide [1 ]
机构
[1] Kyushu Univ, Grad Sch Bioresource & Bioenvironm Sci, Dept Biosci & Biotechnol, Sect Bioproc Design,Higashi Ku, Fukuoka 8208581, Japan
[2] RIKEN Ctr Sustainable Resource Sci, Yokohama, Kanagawa 2300045, Japan
[3] JST, CREST, Kawaguchi, Saitama 3320012, Japan
基金
日本学术振兴会;
关键词
Biochemical systems theory; Newton-Raphson method; Parameter estimation; Time course data; TRICARBOXYLIC-ACID CYCLE; DICTYOSTELIUM-DISCOIDEUM; STEADY-STATE; LAW; OPTIMIZATION;
D O I
10.1016/j.mbs.2013.11.002
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metabolic reaction systems can be modeled easily in terms of S-system type equations if their metabolic maps are available. This study therefore proposes a method for estimating parameters in decoupled S-system equations on the basis of the Newton-Raphson method and elucidates the performance of this estimation method. Parameter estimation from the time-course data of metabolite concentrations reveals that the parameters estimated are highly accurate, indicating that the estimation algorithm has been constructed correctly. The number of iterations is small and the calculation converges in a very short time (usually less than 1 s). The method is also applied to time course data with noise and found to estimate parameters efficiently. Results indicate that the present method has the potential to be extended to a method for estimating parameters in large-scale metabolic reaction systems. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:11 / 21
页数:11
相关论文
共 26 条
[1]  
[Anonymous], 1976, BIOCH SYSTEMS ANAL S
[2]   Parameter estimation in biochemical systems models with alternating regression [J].
Chou, I-Chun ;
Martens, Harald ;
Voit, Eberhard O. .
THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2006, 3
[3]   Recent developments in parameter estimation and structure identification of biochemical and genomic systems [J].
Chou, I-Chun ;
Voit, Eberhard O. .
MATHEMATICAL BIOSCIENCES, 2009, 219 (02) :57-83
[4]   Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics [J].
Hirai, MY ;
Klein, M ;
Fujikawa, Y ;
Yano, M ;
Goodenowe, DB ;
Yamazaki, Y ;
Kanaya, S ;
Nakamura, Y ;
Kitayama, M ;
Suzuki, H ;
Sakurai, N ;
Shibata, D ;
Tokuhisa, J ;
Reichelt, M ;
Gershenzon, J ;
Papenbrock, J ;
Saito, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (27) :25590-25595
[5]   Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana [J].
Hirai, MY ;
Yano, M ;
Goodenowe, DB ;
Kanaya, S ;
Kimura, T ;
Awazuhara, M ;
Arita, M ;
Fujiwara, T ;
Saito, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (27) :10205-10210
[6]   Parameter estimation of kinetic models from metabolic profiles: two-phase dynamic decoupling method [J].
Jia, Gengjie ;
Stephanopoulos, Gregory N. ;
Gunawan, Rudiyanto .
BIOINFORMATICS, 2011, 27 (14) :1964-1970
[7]   Dynamic modeling of genetic networks using genetic algorithm and S-system [J].
Kikuchi, S ;
Tominaga, D ;
Arita, M ;
Takahashi, K ;
Tomita, M .
BIOINFORMATICS, 2003, 19 (05) :643-650
[8]   S-system parameter estimation for noisy metabolic profiles using Newton-flow analysis [J].
Kutalik, Z. ;
Tucker, W. ;
Moulton, V. .
IET SYSTEMS BIOLOGY, 2007, 1 (03) :174-180
[9]   Inference of biochemical network models in S-system using multiobjective optimization approach [J].
Liu, Pang-Kai ;
Wang, Feng-Sheng .
BIOINFORMATICS, 2008, 24 (08) :1085-1092
[10]  
Press W., 1994, NUMERICAL RECIPES C