Non-hermitian quantum mechanics in non-commutative space
被引:16
|
作者:
Giri, Pulak Ranjan
论文数: 0引用数: 0
h-index: 0
机构:
Saha Inst Nucl Phys, Div Theory, Kolkata 700064, W Bengal, IndiaSaha Inst Nucl Phys, Div Theory, Kolkata 700064, W Bengal, India
Giri, Pulak Ranjan
[1
]
Roy, P.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700108, IndiaSaha Inst Nucl Phys, Div Theory, Kolkata 700064, W Bengal, India
Roy, P.
[2
]
机构:
[1] Saha Inst Nucl Phys, Div Theory, Kolkata 700064, W Bengal, India
[2] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700108, India
来源:
EUROPEAN PHYSICAL JOURNAL C
|
2009年
/
60卷
/
01期
关键词:
OSCILLATOR;
D O I:
10.1140/epjc/s10052-009-0866-9
中图分类号:
O412 [相对论、场论];
O572.2 [粒子物理学];
学科分类号:
摘要:
A recent investigation of the possibility of having a PT-symmetric periodic potential in an optical lattice stimulated the urge to generalize non-hermitian quantum mechanics beyond the case of commutative space. We thus study non-hermitian quantum systems in non-commutative space as well as a PT-symmetric deformation of this space. Specifically, a PT-symmetric harmonic oscillator together with an iC(x(1) + x(2)) interaction are discussed in this space, and solutions are obtained. We show that in the PT deformed non-commutative space the Hamiltonian may or may not possess real eigenvalues, depending on the choice of the non-commutative parameters. However, it is shown that in standard non-commutative space, the iC(x(1) + x(2)) interaction generates only real eigenvalues despite the fact that the Hamiltonian is not PT-symmetric. A complex interacting anisotropic oscillator system also is discussed.