A Laboratory Assessment of 120 Air Pollutant Emissions from Biomass and Fossil Fuel Cookstoves

被引:62
作者
Bilsback, Kelsey R. [1 ]
Dahlke, Jordyn [1 ]
Fedak, Kristen M. [2 ]
Good, Nicholas [2 ]
Hecobian, Arsineh [3 ]
Herckes, Pierre [4 ]
L'Orange, Christian [1 ]
Mehaffy, John [1 ]
Sullivan, Amy [3 ]
Tryner, Jessica [1 ]
Van Zyl, Lizette [1 ]
Walker, Ethan S. [2 ]
Zhou, Yong [3 ]
Pierce, Jeffrey R. [3 ]
Wilson, Ander [5 ]
Peel, Jennifer L. [2 ]
Volckens, John [1 ]
机构
[1] Colorado State Univ, Dept Mech Engn, 1374 Campus Delivery, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Environm & Radiol Hlth Sci, 1681 Campus Delivery, Ft Collins, CO 80523 USA
[3] Colorado State Univ, Dept Atmospher Sci, 1371 Campus Delivery, Ft Collins, CO 80523 USA
[4] Arizona State Univ, Sch Mol Sci, 1604 Campus Delivery, Tempe, AZ 85287 USA
[5] Colorado State Univ, Dept Stat, 1877 Campus Delivery, Ft Collins, CO 80523 USA
关键词
POLYCYCLIC AROMATIC-HYDROCARBONS; PARTICULATE MATTER; ULTRAFINE PARTICLES; SIZE DISTRIBUTIONS; OPTICAL-PROPERTIES; ORGANIC AEROSOLS; CARBON-MONOXIDE; HEALTH IMPACTS; INDOOR AIR; AMBIENT;
D O I
10.1021/acs.est.8b07019
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cookstoves emit many pollutants that are harmful to human health and the environment. However, most of the existing scientific literature focuses on fine particulate matter (PM2.5) and carbon monoxide (CO). We present an extensive data set of speciated air pollution emissions from wood, charcoal, kerosene, and liquefied petroleum gas (LPG) cookstoves. One-hundred and twenty gas- and particle-phase constituents including organic carbon, elemental carbon (EC), ultrafine particles (10-100 nm), inorganic ions, carbohydrates, and volatile/semivolatile organic compounds (e.g., alkanes, alkenes, alkynes, aromatics, carbonyls, and polycyclic aromatic hydrocarbons (PAHs))-were measured in the exhaust from 26 stove/fuel combinations. We find that improved biomass stoves tend to reduce PM2.5 emissions; however, certain design features (e.g., insulation or a fan) tend to increase relative levels of other coemitted pollutants (e.g., EC ultrafine particles, carbonyls, or PAHs, depending on stove type). In contrast, the pressurized kerosene and LPG stoves reduced all pollutants relative to a traditional three-stone fire (>= 93% and >= 79%, respectively). Finally, we find that PM2.5 and CO are not strong predictors of coemitted pollutants, which is problematic because these pollutants may not be indicators of other cookstove smoke constituents (such as formaldehyde and acetaldehyde) that may be emitted at concentrations that are harmful to human health.
引用
收藏
页码:7114 / 7125
页数:12
相关论文
共 72 条
  • [21] Health and climate benefits of cookstove replacement options
    Grieshop, Andrew P.
    Marshall, Julian D.
    Kandlikar, Milind
    [J]. ENERGY POLICY, 2011, 39 (12) : 7530 - 7542
  • [22] Emission factors and thermal efficiencies of cooking biofuels from five countries
    Gupta, S
    Saksena, S
    Shankar, VR
    Joshi, V
    [J]. BIOMASS & BIOENERGY, 1998, 14 (5-6) : 547 - 559
  • [23] Chemical, Microphysical and Optical Properties of Primary Particles from the Combustion of Biomass Fuels
    Habib, Gazala
    Venkataraman, Chandra
    Bond, Tami C.
    Schauer, James J.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (23) : 8829 - 8834
  • [24] Hastie T., 2016, The Elements of Statistical Learning
  • [25] Proinflammatory effects of cookstove emissions on human bronchial epithelial cells
    Hawley, B.
    Volckens, J.
    [J]. INDOOR AIR, 2013, 23 (01) : 4 - 13
  • [26] IEA (International Energy Agency), 2017, ENERGY ACCESS OUTLOO
  • [27] JANSSEN N., 2012, HLTH EFFECTS BLACK C
  • [28] Pollutant Emissions and Energy Efficiency under Controlled Conditions for Household Biomass Cookstoves and Implications for Metrics Useful in Setting International Test Standards
    Jetter, James
    Zhao, Yongxin
    Smith, Kirk R.
    Khan, Bernine
    Yelverton, Tiffany
    DeCarlo, Peter
    Hays, Michael D.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (19) : 10827 - 10834
  • [29] Evolution of Organic Aerosols in the Atmosphere
    Jimenez, J. L.
    Canagaratna, M. R.
    Donahue, N. M.
    Prevot, A. S. H.
    Zhang, Q.
    Kroll, J. H.
    DeCarlo, P. F.
    Allan, J. D.
    Coe, H.
    Ng, N. L.
    Aiken, A. C.
    Docherty, K. S.
    Ulbrich, I. M.
    Grieshop, A. P.
    Robinson, A. L.
    Duplissy, J.
    Smith, J. D.
    Wilson, K. R.
    Lanz, V. A.
    Hueglin, C.
    Sun, Y. L.
    Tian, J.
    Laaksonen, A.
    Raatikainen, T.
    Rautiainen, J.
    Vaattovaara, P.
    Ehn, M.
    Kulmala, M.
    Tomlinson, J. M.
    Collins, D. R.
    Cubison, M. J.
    Dunlea, E. J.
    Huffman, J. A.
    Onasch, T. B.
    Alfarra, M. R.
    Williams, P. I.
    Bower, K.
    Kondo, Y.
    Schneider, J.
    Drewnick, F.
    Borrmann, S.
    Weimer, S.
    Demerjian, K.
    Salcedo, D.
    Cottrell, L.
    Griffin, R.
    Takami, A.
    Miyoshi, T.
    Hatakeyama, S.
    Shimono, A.
    [J]. SCIENCE, 2009, 326 (5959) : 1525 - 1529
  • [30] In-field greenhouse gas emissions from cookstoves in rural Mexican households
    Johnson, Michael
    Edwards, Rufus
    Frenk, Claudio Alatorre
    Masera, Omar
    [J]. ATMOSPHERIC ENVIRONMENT, 2008, 42 (06) : 1206 - 1222