Gene regulatory networks in plants: learning causality from time and perturbation

被引:54
|
作者
Krouk, Gabriel [3 ]
Lingeman, Jesse [1 ]
Colon, Amy Marshall [2 ]
Coruzzi, Gloria [2 ]
Shasha, Dennis [1 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10003 USA
[2] NYU, Dept Biol, Ctr Genom & Syst Biol, New York, NY 10003 USA
[3] Inst Claude Grignon, UMR CNRS INRA SupAgro UM2 5004, F-34060 Montpellier, France
来源
GENOME BIOLOGY | 2013年 / 14卷 / 06期
基金
美国国家科学基金会;
关键词
Gene regulatory networks; network interference; plant; systems biology; CIRCADIAN CLOCK; TRANSCRIPTIONAL REGULATION; SEED-GERMINATION; ARABIDOPSIS; MODEL; PROTEIN; ROBUST; IDENTIFICATION; CIRCUIT; AUXIN;
D O I
10.1186/gb-2013-14-6-123
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The goal of systems biology is to generate models for predicting how a system will react under untested conditions or in response to genetic perturbations. This paper discusses experimental and analytical approaches to deriving causal relationships in gene regulatory networks.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] The trans-regulatory landscape of gene networks in plants
    Hummel, Niklas F. C.
    Zhou, Andy
    Li, Baohua
    Markel, Kasey
    Ornelas, Izaiah J.
    Shih, Patrick M.
    CELL SYSTEMS, 2023, 14 (06) : 501 - +
  • [22] Learning gene regulatory networks from only positive and unlabeled data
    Cerulo, Luigi
    Elkan, Charles
    Ceccarelli, Michele
    BMC BIOINFORMATICS, 2010, 11
  • [23] Learning gene regulatory networks from only positive and unlabeled data
    Luigi Cerulo
    Charles Elkan
    Michele Ceccarelli
    BMC Bioinformatics, 11
  • [24] Learning gene regulatory networks from next generation sequencing data
    Jia, Bochao
    Xu, Suwa
    Xiao, Guanghua
    Lamba, Vishal
    Liang, Faming
    BIOMETRICS, 2017, 73 (04) : 1221 - 1230
  • [25] Learning gene regulatory networks from gene expression data using weighted consensus
    Fujii, Chisato
    Kuwahara, Hiroyuki
    Yu, Ge
    Guo, Lili
    Gao, Xin
    NEUROCOMPUTING, 2017, 220 : 23 - 33
  • [26] Bayesian learning of sparse gene regulatory networks
    Chan, Zeke S. H.
    Collins, Lesley
    Kasabov, N.
    BIOSYSTEMS, 2007, 87 (2-3) : 299 - 306
  • [27] Meta-Analysis on Gene Regulatory Networks Discovered by Pairwise Granger Causality
    Tam, Gary Hak Fui
    Hung, Yeung Sam
    Chang, Chunqi
    2013 7TH INTERNATIONAL CONFERENCE ON SYSTEMS BIOLOGY (ISB), 2013, : 123 - 128
  • [28] Inference of gene regulatory networks from time series by Tsallis entropy
    Lopes, Fabricio Martins
    de Oliveira, Evaldo A.
    Cesar, Roberto M., Jr.
    BMC SYSTEMS BIOLOGY, 2011, 5
  • [29] SPARSE BIOLOGICALLY-CONSTRAINED OPTIMAL PERTURBATION OF GENE REGULATORY NETWORKS
    Wang, Haoyu
    Bouaynaya, Nidhal
    Shterenberg, Roman
    Schonfeld, Dan
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 1167 - 1171
  • [30] Multioviz: an interactive platform for in silico perturbation and interrogation of gene regulatory networks
    Xie, Helen
    Crawford, Lorin
    Conard, Ashley Mae
    BMC BIOINFORMATICS, 2024, 25 (01):