Solution of a Novel Quasi-Exactly Solvable Potential via Asymptotic Iteration Method

被引:3
作者
Oezer, Okan [1 ]
机构
[1] Univ Gaziantep, Fac Engn, Dept Engn Phys, TR-27310 Gaziantep, Turkey
来源
PROGRESS OF THEORETICAL PHYSICS | 2009年 / 121卷 / 03期
关键词
EIGENVALUE PROBLEMS; EIGENENERGIES; SYSTEMS; V(X);
D O I
10.1143/PTP.121.437
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply the asymptotic iteration method to a novel quasi-exactly solvable model with symmetric inverted potentials which are unbounded from below. Energy eigenvalues and eigenfunctions are determined. Our results are in consistent with exact results.
引用
收藏
页码:437 / 443
页数:7
相关论文
共 22 条
[1]   The asymptotic iteration method for the eigenenergies of the Schrodinger equation with the potential V(r) = -Z/r plus gr plus λr2 [J].
Barakat, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (04) :823-831
[2]   The asymptotic iteration method for the eigenenergies of the anharmonic oscillator potential V(x) = Ax2α + Bx2 [J].
Barakat, T .
PHYSICS LETTERS A, 2005, 344 (06) :411-417
[3]   The asymptotic iteration method for the angular spheroidal eigenvalues [J].
Barakat, T ;
Abodayeh, K ;
Mukheimer, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (06) :1299-1304
[4]   Exact analytical solutions to the Kratzer potential by the asymptotic iteration method [J].
Bayrak, O. ;
Boztosun, I. ;
Ciftci, H. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2007, 107 (03) :540-544
[5]   A novel quasi-exactly solvable model with total transmission modes [J].
Cho, Hing-Tong ;
Ho, Choon-Lin .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (17)
[6]   Construction of exact solutions to eigenvalue problems by the asymptotic iteration method [J].
Ciftci, H ;
Hall, RL ;
Saad, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (05) :1147-1155
[7]   Asymptotic iteration method for eigenvalue problems [J].
Ciftci, H ;
Hall, RL ;
Saad, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (47) :11807-11816
[8]  
Cooper F., 1995, Physics Reports, V251, P267, DOI 10.1016/0370-1573(94)00080-M
[9]   A general approach of quasi-exactly solvable Schrodinger equations [J].
Debergh, N ;
Ndimubandi, J ;
Van den Bossche, B .
ANNALS OF PHYSICS, 2002, 298 (02) :361-381
[10]   On an iteration method for eigenvalue problems [J].
Fernández, FM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (23) :6173-6180