Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems

被引:20
作者
Choi, Sou-Cheng T. [1 ]
Saunders, Michael A. [2 ]
机构
[1] Univ Chicago, Argonne Natl Lab, Chicago, IL 60637 USA
[2] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2014年 / 40卷 / 02期
基金
美国国家科学基金会;
关键词
Algorithms; Krylov subspace method; Lanczos process; conjugate-gradient method; singular least-squares; linear equations; minimum-residual method; pseudoinverse solution; ill-posed problem; regression; sparse matrix; data encapsulation; LANCZOS-ALGORITHM; INDEFINITE; LSQR;
D O I
10.1145/2527267
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite preconditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP.
引用
收藏
页数:12
相关论文
共 26 条
[1]   An L-curve for the MINRES method [J].
Calvetti, D ;
Lewis, B ;
Reichel, L .
ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS X, 2000, 4116 :385-395
[2]  
Choi S., 2006, Ph.D. thesis.
[3]   MINRES-QLP: A KRYLOV SUBSPACE METHOD FOR INDEFINITE OR SINGULAR SYMMETRIC SYSTEMS [J].
Choi, Sou-Cheng T. ;
Paige, Christopher C. ;
Saunders, Michael A. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (04) :1810-1836
[4]  
Choi Sou-Cheng T., 2012, ANLMCSP30270812 U CH
[5]   The University of Florida Sparse Matrix Collection [J].
Davis, Timothy A. ;
Hu, Yifan .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2011, 38 (01)
[6]  
Dongarra Jack, 1995, UTCS95291
[7]  
Fong D. C.-L., 2012, SQU J SCI, V17, P44, DOI DOI 10.24200/SQUJS.VOL17ISS1PP44-62
[8]  
Fong David C.-L., 2011, THESIS STANFORD U ST
[9]   LSMR: AN ITERATIVE ALGORITHM FOR SPARSE LEAST-SQUARES PROBLEMS [J].
Fong, David Chin-Lung ;
Saunders, Michael .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) :2950-2971
[10]  
Foster Leslie, 2009, SAN JOSE STATE U SIN